SciELO - Scientific Electronic Library Online

 
vol.27 issue3Hipertensión pulmonar tromboembólica crónicaValidación de Primary Care Assessment Tool (PCAT) en Uruguay author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Related links

Share


Revista Médica del Uruguay

On-line version ISSN 1688-0390

Rev. Méd. Urug. vol.27 no.3 Montevideo Sept. 2011

 

La iluminación del campo operatorio en cirugía general

Dr. Francisco A. Crestanello*

Resumen

Hacia 1880, la cirugía conquistó las regiones profundas del cuerpo, surgiendo el problema de cómo iluminarlas. Las salas de operaciones se reubicaron donde recibieran más luz solar, se las dotó de ventanas, claraboyas y de fuentes de luz artificial, pero nada de eso resultó en una solución.

En 1919, Louis Verain diseñó una lámpara eléctrica que proyectaba un haz de luz homogénea, intensa y de sombras atenuadas, que denominó scialítica. Por 60 años fue el paradigma de la iluminación en cirugía e influyó en cambios del diseño hospitalario.

Pese a que en 1806, Bozzini, proyectando luz de velas, había iniciado la endoscopía, a que en 1875 Nitze había diseñado un cistoscopio con luz propia, y a que desde 1910 internistas y gastroenterólogos introducían endoscopios en las cavidades serosas con fines diagnósticos, hubo que esperar hasta la década de 1960 para que Kurt Semm se interesara en estos avances, los aplicara a la ginecología y les agregara posibilidades terapéuticas, y hasta 1980 para que se extendieran a gran parte de la cirugía, convirtiéndola en cirugía mínimamente invasiva. Hoy día, ésta emplea instrumentos que asocian modernas tecnologías de iluminación (fuentes externas de luz fría y haces de fibras ópticas que la conducen), y de visión indirecta (lentes varilla asociados a microcámaras de video con dispositivos de carga acoplada o CCD), que permiten iluminar y visualizar el campo operatorio en forma mucho más clara que con las clásicas laparotomías.

Palabras clave: CIRUGÍA GENERAL - historia.

ILUMINACIÓN.

QUIRÓFANOS.

 

Keywords: GENERAL SURGERY - history.

LIGHTING.

OPERATING ROOMS.

* Profesor de Clínica Quirúrgica. Ex director de la Clínica Quirúrgica "A". Hospital de Clínicas, "Dr. Manuel Quintela". Facultad de Medicina. Uruguay.

Miembro titular de la Academia Nacional de Medicina. Uruguay.

Miembro de la Sociedad Uruguaya de Historia de la Medicina. Uruguay.

Correspondencia: Dr. Francisco A. Crestanello

Alejandro Fiol de Pereda, CP 11800. Montevideo, Uruguay.

Correo electrónico: fcrestanello@adinet.com.uy

Recibido: 14/3/11.

Aprobado 26/5/11.

Introducción

En 2009, la lámpara scialítica cumplió 90 años y el Premio Nobel de Física fue otorgado a tres investigadores(1) cuyos aportes, entre otras cosas, permitieron profundos avances de la endoscopía y cambios radicales de la cirugía. Ambos acontecimientos son el motivo para describir la poco divulgada historia de la iluminación del campo operatorio en cirugía general, indisolublemente ligada a la de las tecnologías de la iluminación artificial y más recientemente a la de la transmisión de imágenes.

Los albores de la cirugía

Al inicio se operaba durante el día y en la superficie del cuerpo, pero por necesidades extremas esporádicamente se operaban regiones profundas con éxito sorprendente. Desde fines del siglo XVII se han conservado algunos registros detallados, cuatro de los cuales se resumen en la tabla 1.

Cyprianus operó un día de invierno e hizo colocar la cama de la paciente lejos de las ventanas, en el centro de la habitación(2). McDowell también operó en invierno a la luz de una pequeña ventana situada detrás de la cabeza de la paciente(3).

Presumiblemente en una penumbra semejante, demostrando una asombrosa habilidad técnica, Astley Cooper(4) y Garviso(5,6), respectivamente, ligaron la aorta abdominal y la arteria ilíaca primitiva, sin lesionar los órganos vecinos.

Los teatros operatorios y las primeras salas de operaciones

Hasta la segunda mitad del siglo XIX, las salas de operaciones fueron dependientes de la luz natural. Para optimizarlas, en forma semejante a los estudios de los pintores, tenían grandes ventanas de vidrio despulido para que la luz fuera difusa y redujera el deslumbramiento y las sombras; la mesa de operaciones se colocaba cerca de ellas, lo que producía un inconveniente intercambio térmico del paciente con el exterior. En algunas salas, además, se colocaba una claraboya que permitía la entrada de luz cenital; entre otras aún se conservan la del Massachussets General Hospital de Boston (1821), en la que el 16 de octubre de 1846 se realizó la primera demostración pública de anestesia general con éter sulfúrico (ether dome)(7), y la de la sala de operaciones del Guy Hospital de Londres (1822)(8).

En este aspecto algunas salas llegaron a la exageración; Jules Émile Péan, en el Hospital Saint-Louis de París, tenía una sala con paredes vidriadas semejante a un invernadero, montada sobre soportes que permitían rotarla para un mejor aprovechamiento de la luz(9).

Las pinturas de cinco notorios cirujanos europeos y norteamericanos de fines del siglo XIX y principios del XX, que se resumen en la tabla 2, y numerosos daguerrotipos y fotografías, algunos de los que se resumen en la tabla 3 y se reproducen en este artículo (figuras 1 y 2), documentan cómo era esta iluminación natural.

Pero esta estrategia era ineficaz; las salas estaban más iluminadas pero los campos operatorios anfractuosos y profundos continuaban en penumbra(9).

Probablemente en cirugía general se haya imitado a la otorrinolaringología intentando proyectar la luz solar sobre el campo operatorio mediante espejos, pero el autor de este artículo no ha encontrado evidencia bibliográfica de ello.

Hasta comienzos del siglo XX no hubo fuentes de luz artificial adecuadas para la cirugía

La primera fuente de luz artificial fue la incandescencia de las partículas de carbón de la llama de diversos dispositivos de combustión incompleta.

Desde los siglos IV o V existían velas de cera de abejas, desde el siglo XIV velas de sebo y desde los siglos XVIII y XIX velas de grasa de espermaceti de cachalote(18) y de estearina. Su luz era débil y desprendían humo, olores y gotas.

Desde la Antigüedad se disponía de lámparas de mecha y combustibles semisólidos o líquidos, que en el siglo XVIII experimentaron avances significativos en su diseño: la mecha plana, atribuida al francés Ligère (19); la mecha doble atribuida a Benjamin Franklin, y, finalmente, el quemador de mecha plana cilíndrica del químico suizo François Pierre Ami Argand y la chimenea de vidrio del boticario francés Antoine Aroult Quinquet, ambos de 1783 (20).

Concomitantemente de las grasas y aceites vegetales se pasó a los extraídos de la grasa de las ballenas y de los cachalotes (18) y, a mediados del siglo XIX, de éstos a los derivados del aceite mineral o petróleo (21).

En otra línea de lámparas de combustión(22), en 1807, Frederick Albert Winsor (o Winzer) instaló el primer alumbrado público a gas de Londres y hacia mediados del siglo XIX aparecieron numerosos generadores de gas y lámparas para uso doméstico. Estas daban una luz débil y generaban un cono de sombra por debajo. En 1870, el ingeniero británico Francis Wenham inventó la "Shadow-less gas lamp", que carecía de este inconveniente; fue la lámpara de referencia hasta la aparición de las lámparas de incandescencia y las lámparas eléctricas.

Hacia 1890 comenzó la venta a costo accesible de carburo de calcio y de diversos generadores fijos y portátiles para producir gas acetileno. Las lámparas de este gas generaban una luz muy brillante, pero de muy alta temperatura, por lo que no eran adecuadas para la cirugía.

En el siglo XIX también se desarrollaron lámparas que generaban una luz intensa por incandescencia de ciertos componentes calentados con llama: óxido de calcio, platino, magnesio, y mantillas de fibras vegetales impregnadas en tierras raras que se emplean hasta hoy (22,23).

Se realizaron varios intentos para adaptar algunas de estas lámparas a las necesidades de la cirugía. En 1889 el profesor Antonin Poncet, en Lyon, iluminó su sala de operaciones con lámparas de Wenham; probablemente haya sido de las primeras que contó con ellas (24,25).

Pero por diversas razones, que a menudo se asociaban, estas fuentes de luz artificial por combustión eran inadecuadas para la iluminación en cirugía:

- Su luz era débil, no concentrable, ni proyectable.

- Producían humo (que ennegrecía las chimeneas de vidrio, contaminaba el aire, y ensuciaba techos y paredes), olores desagradables y gases irritantes o tóxicos que hacían necesario complicados sistemas de ventilación, manejo y mantenimiento.

- Generaban calor. Si se ponían cerca calentaban hasta más allá de lo soportable la cabeza de los cirujanos y si se instalaban en el techo disminuían su eficacia.

- Eran incompatibles con el empleo de anestésicos volátiles, sobre todo el éter.

- Implicaban riesgos de incendios y explosiones.

A principios del siglo XIX comenzó la búsqueda de la iluminación eléctrica (26). Los registros históricos destacan a:

- Humphry Davy (Inglaterra) con el arco eléctrico (1802), y la incandescencia de tiras de platino (1809).

- Warren de la Rue (Inglaterra), con su lámpara incandescente con filamento de rulo de platino dentro de un tubo de vidrio con vacío (1820).

- James Bowman Lindsay (Escocia) con su prototipo de lámpara incandescente estable, que al igual que una vela "permitía leer un libro a un pie y medio de distancia" (1835).

Ellos iniciaron la larga etapa precomercial de la historia de la iluminación eléctrica, en la que más de un centenar de europeos y estadounidenses buscaron los elementos más apropiados para fabricar una lámpara eléctrica barata, eficiente, duradera y fácil de utilizar, generando una insoluble controversia de prioridades. Entre ellos se destacaron:

- El estudiante de medicina de Toronto Henry Wood-ward y su asociado Matthew Evans, que a fines de la década de 1870 patentaron una lámpara de filamento de carbón y atmósfera de nitrógeno, pero carecieron de los recursos económicos para comercializarla.

- Sir Joseph Wilson Swan, quien en febrero de 1879, en Inglaterra, presentó la primera lámpara eléctrica incandescente práctica, pero lo publicó a mediados de 1880.

- Thomas Alva Edison, en Estados Unidos, que compró la patente de Woodward y Evans, prosiguió sus investigaciones y en enero de 1880 patentó una lámpara de filamento de bambú que duraba 40-60 horas y tenía una potencia luminosa equivalente a unas diez velas; a pesar de que su invento no fue primacial, por lo menos en Estados Unidos inició la etapa comercial de la historia de la iluminación eléctrica.

Las primeras lámparas eléctricas incandescentes tenían varias deficiencias que demoraron por varios años su aplicación a las necesidades de la iluminación en cirugía: gran volumen, escasa potencia, generación de calor, ennegrecimiento de la ampolla de vidrio y corta duración. Cuando se superaron, comenzaron a utilizarse para complementar o sustituir la luz natural en las salas de operaciones, como muestra una fotografía de 1900 del gran teatro operatorio del Jefferson Medical College de Filadelfia (figura 3) (27).

Hubo otras formas de producir luz a partir de la electricidad utilizando el arco eléctrico: las "velas eléctricas" o "velas rusas" (Pavel Yablochkov, 1875), y las lámparas de arco de complicado sistema mecánico (26). Daban una luz muy intensa pero disipaban muchos gases y calor, por lo que no fueron adecuadas para la cirugía.

Paralelamente al desarrollo de las lámparas eléctricas hubo que encontrar un suministro de electricidad más abundante que el de las pilas.

En 1831, Michael Faraday, en Inglaterra, construyó el primer generador de corriente continua, a escala de laboratorio, y en 1868, Zénobe-Théophile Gramme, en Bélgica, el primero industrial o dínamo (del griego ? v?????= fuerza), con el que en 1873 en la Exposicion de Viena demostró que la energía eléctrica era transportable mediante alambres, hecho que para algunos historiadores tuvo una fuerza moral comparable a la de la construcción de las grandes catedrales europeas varios siglos antes.

En 1882, Edison instaló en Manhattan un sistema de iluminación eléctrica de corriente continua. En 1888 el serbio-estadounidense Nikola Tesla construyó los primeros generadores y motores de corriente alterna, cuyas patentes vendió al industrial George Westinghouse, y éste en 1896 puso en servicio una central de corriente alterna en las cataratas del Niágara con la que impuso definitivamente este tipo de corriente eléctrica.

1880 en adelante. La iluminación artificial avanza más lentamente que la cirugía

En la década de 1880 la cirugía llegó a las profundidades del abdomen y la pelvis, y pudo operar sus órganos en forma segura, programada y regular, con lo que la iluminación artificial disponible fue aun más inadecuada y fue necesario realizar laparotomías más amplias.

Entre 1890 y 1919 las fuentes generadoras y las redes de distribución se multiplicaron y se dispuso de energía eléctrica más abundante; a su vez, las lámparas eléctricas eran más durables, más potentes, más eficientes y de uso más simple, llenando las necesidades de la iluminación doméstica, comercial e industrial, pero no las de la cirugía en regiones profundas del cuerpo.

Segunda década del siglo XX. La lámpara scialítica de Louis Verain y su posterior reinado indiscutido de seis décadas

En 1919, en Argelia, Louis François Verain encontró una forma práctica de satisfacer esa necesidad.

Se sabe poco de él. Era ingeniero, profesor de electromecánica en la Escuela de Ciencias de la Universidad de Alger, que estaba asociada a la de Medicina(9,28). Quizá no le interesaba publicar o no consideró que su invento poseyera mérito suficiente para hacerlo; de hecho, la única publicación sobre el mismo que el autor de este artículo, con no poca dificultad, pudo encontrar, es una comunicación hecha tres décadas después a la Sociedad de Ingenieros Civiles de Francia(28).

En ella relata que a la vez que profesor universitario, él era capitán del servicio técnico de aeronáutica y encargado de marcar las rutas aéreas con faros. En esa época un amigo profesor de cirugía le había encargado buscar una solución al problema de la iluminación del campo operatorio, asegurándole que si era buena sería exitosa porque su necesidad era sentida cotidianamente por los cirujanos.

Los faros que instalaba Verain tenían unas lentes livianas y eficientes inventadas cien años antes por el ingeniero francés Augustin Jean Fresnel, llamadas por ello lentes de Fresnel.

Mientras Verain estudiaba los haces luminosos de una de estas lentes con forma de cilindro hueco, con una singular economía de medios -una pequeña lámpara de automóvil colocada en el punto focal de la lente Fresnel, y espejos que él mismo preparó azogando viejas placas fotográficas y luego montó a 45 grados formando una corona en una vieja rueda de bicicleta- fabricó el prototipo de una lámpara con la que iluminó el interior de una caja parcialmente llena de objetos de modo que crearan anfractuosidades.

Cuando interpuso la cabeza en la trayectoria del haz luminoso de su lámpara tuvo "una de las más grandes sorpresas de su vida de físico: la luz llegaba a todos los lados, iluminando a la vez el fondo y las paredes del más pequeño receso de una manera sorprendente, y el hecho que no hubiera sombras le impuso de inmediato el nombre de scialítica"(28), (del griego ???? o skia sombra, y ????????o lyticos, disolver).(figura 4)

Este hecho se debe a que el haz de luz generado por la reflexión en la corona de espejos está compuesto por múltiples rayos entrecruzados de modo que los objetos que se interponen en su trayecto sólo interfieren con algunos de esos rayos, no con todos.

A partir de 1920, la lámpara de Verain fue fabricada y comercializada con el nombre de lámpara scialítica por la firma francesa Barbier, Benard y Turenne (BBT) especializada en sistemas de iluminación civil y militar. Se difundió por todo el mundo, facilitó significativamente la práctica de la cirugía, y su nombre pasó a denominar genéricamente a los sistemas de iluminación del área operatoria.

Además, permitió operar a cualquier hora del día o de la noche, liberó la atmósfera de las salas de operaciones de gases y humos de combustión y de cambios extremos de temperatura, e influyó en la evolución de la arquitectura hospitalaria permitiendo que las salas de operaciones pudieran ser ubicadas en cualquier zona, se concentraran en blocks operatorios y que hacia 1930 los hospitales pabellonarios fueran sustituidos por edificios hospitalarios monoblock(9).

Hubo otros dispositivos de iluminación para cirugía basados en el principio de los haces luminosos entrecruzados de la scialítica, pero tuvieron corta vida; entre ellos se destacó el pantophos fabricado por la empresa Zeiss, de principio bastante similar a la scialítica(29).

También hubo otros dispositivos más complejos y voluminosos que en su mayor parte fueron destruidos, aunque sus restos todavía se conservan en el techo de habitaciones hospitalarias desafectadas a la práctica de la cirugía(24).

- Súper scialíticas gigantescas de dos metros de diámetro ubicadas fuera de la sala, por encima de una claraboya cenital; era difícil orientarlas de acuerdo a las necesidades del cirujano (Hospital Cochin de París y otro de Lyon).

- Bóvedas diseñadas por el ingeniero André Walter, que se ubicaban en el techo de la sala de operaciones. Su concavidad estaba revestida con un material reflejante y se enfrentaban a un potente proyector de luz orientable por un telecomando (Hospital Necker-Enfants Malades, Broussais, de Niort, de Brest y de Lille).

- Bóveda del ingeniero Blin. Era una semiesfera en cuya concavidad tenía unos 60 poderosos proyectores que podían encenderse a voluntad en función de las necesidades del desarrollo operatorio.

En el piso 17 del Hospital de Clínicas "Dr. Manuel Quintela", hubo una gran scialítica fija instalada en el techo de una sala de operaciones, que nunca se utilizó como tal.

A algunas de estas grandes scialíticas se le adjuntaron sistemas de lentes y espejos que permitían proyectar la imagen del campo operatorio en una pantalla ubicada en un cuarto oscuro vecino (scialiscopio)(28).

Entre 1920 y 1980 la scialítica reinó de manera indiscutida. Conservó su principio original, pero mejoró su diseño e incorporó modernos materiales y tecnologías que superaron dos inconvenientes de los primeros modelos(29):

- Las oscilaciones dependientes porque estaban suspendidas por una cadena. Ésta fue sustituida por brazos articulados que la dotaron de amplia movilidad y firme fijación.

- El desprendimiento de calor excesivo, que fue superado con tipos más avanzados de lámparas eléctricas (con atmósfera de neón, argón, helio, criptón o xenón, halógenas [1950], y de plasma de sulfuro [1994])(26), y con el agregado de filtros térmicos, reflectores dicroicos y sistemas de ventilación.

Finalmente se les agregó mangos con vainas esterilizables que permiten que las orienten los propios cirujanos, sistemas de regulación de la intensidad de la luz y de modificación del diámetro de la zona iluminada, sistemas de registro para tomar fotografías y filmar videos, se las ha asociado en sistemas complejos de dos o tres lámparas de iguales o diferentes dimensiones, y se las ha blindado para evitar incendios o explosiones de gases inflamables, minimizar el acúmulo de polvo y facilitar la limpieza.

Otro diseño de scialíticas que emiten un haz luminoso con propiedades similares al de la de Verain, es el de varias lámparas con espejos reflectores homogéneamente distribuidas en un disco de diámetro adecuado que convergen su luz hacia el campo a iluminar.

Una estrategia más simple y económica de proyectar un haz de luz en la profundidad del campo operatorio consistió en fijar con cintas a la frente del cirujano un espejo esférico o parabólico con una pequeña fuente de luz en su punto focal. Estos dispositivos son los fotóforos, lámparas cíclope, o frontoluz, cuya variedad de acuerdo a la fuente de luz, el medio de proyección (espejos, lentes y combinaciones) y el diseño, se muestra en publicaciones especializadas.

Su mayor utilización fue en otorrinolaringología.

Su uso en cirugía general fue menos extendido. Se conserva un dibujo de 1914, hecho por Max Brodel, el renombrado ilustrador médico del Johns Hopkins Hospital de Baltimore, que muestra a Harvey Cushing operando con un voluminoso frontolux(16). Se recuerda que el cirujano bonaerense Enrique Finochietto (1881-1948) realizó aportes al diseño y popularización de este dispositivo. Actualmente en cirugía general, en ciertas técnicas en zonas profundas, como la pelvis, algunos cirujanos emplean modernos frontolux con fuentes de luz fría y haces de fibra óptica.

Endoscopía. 155 años de diferentes formas de iluminar y ver no aprovechadas por los cirujanos

Los primeros intentos de ver el interior del cuerpo en vida datan del siglo V aC(30,31). Fueron simples atisbos realizados a través de los orificios naturales (narinas, boca, oído externo, vagina, recto) valiéndose de la luz natural y de instrumentos muy primitivos (tubos, espéculos rudimentarios, etcétera).

Recién desde 1800, unas diez generaciones sucesivas de médicos hicieron realmente posible satisfacer esta inquietud. Con ingenio y la colaboración de físicos, ópticos y mecánicos de precisión, desarrollaron instrumentos cada vez más pequeños, manipulables, sofisticados y específicos, que incorporaban los avances en materia de iluminación artificial y de óptica. Desde hace alrededor de un siglo también acceden al interior del cuerpo a través de incisiones.

Por mucho tiempo la iluminación de la cavidad a explorar constituyó un problema importante, que sucesivamente se resolvió de tres maneras.

a. Proyectando un haz luminoso hacia la cavidad

Phillipp Bozzini (Frankfurt; 1806) en su conductor de la luz (Der Lichtleiter) instrumento que marcó el verdadero inicio de la endoscopía(32), y Pierre-Salomon Ségalas d'Etchepase (Francia; 1826) en su espéculo para la uretra y la vejiga, proyectaron la luz de velas mediante espejos.

En 1853, el francés Antoine Jean Désormeaux diseñó el primer instrumento denominado "endoscopio", provisto de una lámpara de mecha que quemaba alcohol y aceite de turpentina.

En 1854, el español Manuel García, con espejos que sostenía con ambas manos, reflejó la luz solar para observar las cuerdas vocales. Cuatro años después el checo Johann Nepomuk Czermak fijó uno de ellos a su frente para liberar una de sus manos(33-35).

En 1868, en Alemania, Adolf Kussmaul diseñó el primer gastroscopio iniciando la endoscopía del tubo digestivo superior(30). Tenía una lámpara de mecha y un sistema de lentes que proyectaban una luz muy débil sobre un órgano tan alejado.

b. Generando luz artificial dentro de la cavidad a explorar

En 1867, en Alemania, Julius Bruck iluminó la cavidad bucal con un alambre de platino vuelto incandescente por el pasaje de electricidad. Para evitar quemaduras le agregó una camisa de vidrio y un sistema de refrigeración con agua.

En 1875, en Dresden, Justus Schramm-Vogelsang usaba una fuente de luz eléctrica de Bruck para el diagnóstico de enfermedades pelvianas femeninas por diafanoscopía. Hacia 1876, su colaborador Maximilian Nitze(36), con la ayuda de un óptico y de un fabricante de instrumentos de precisión, construyó un cistoscopio con visión magnificada por lentes y una fuente de luz de Bruck en su extremo.

A fines de la década de 1890, en Rochester (Estados Unidos) Charles Preston desarrolló la primera lámpara incandescente miniaturizada de bajo voltaje, de luz algo más fría, que un año después fue incorporada a la extremidad de los cistoscopios en Rochester y en Berlín. Algunas veces se les colocaba más de un filamento para aumentar la intensidad de su luz. Estas lámparas simplificaron y abarataron los endoscopios, pero no resolvieron totalmente el problema del calentamiento, lo que obligaba a limitar la intensidad de su luz.

c. Generando luz artificial fuera de la cavidad y conduciéndola hasta ella

Una estrategia consistió en colocar la fuente de luz en el mango del endoscopio, originando los denominados electroscopios, que eran difíciles de manipular(30).

La otra fue la de ubicar la fuente de luz fuera del paciente y del endoscopio. La primera se atribuye a Max Fourestier y Jean Marie Dubois de Montreynaud (1952).

Desde entonces estas fuentes externas de luz artificial han evolucionado y actualmente asocian lámparas de halogenuro metálico (HMI) o de xenón, potentes ventiladores, reflectores dicroicos que disipan localmente la mayor parte de la radiación infrarroja (calor) y reflejan la radiación visible (luz relativamente más fría) en el sentido deseado, y filtros antitérmicos especiales interpuestos en el trayecto del haz luminoso. De este modo, independientemente de su modelo o potencia, suministran una luz de bajo poder calorífico denominada luz fría.

Para conducir la luz hasta la zona a iluminar, se sabía que la luz se conduce en trozos de vidrio (Mesopotamia y antiguo Egipto), en chorros de agua (Jean Daniel Colladon en Ginebra y Jacques Babinet en Francia; 1841), desde 1880 se hacían investigaciones de posibles aplicaciones de cristal curvado para conducir luz en medicina, y desde 1930 se disponía del polimetilmetacrilato, un material resistente y con alta conductividad de la luz que se utilizó en la fabricación de depresores linguales luminosos y en la de valvas separadoras.

Fourestier y Dubois utilizaron varillas de cuarzo. Posteriormente se pudo fabricar cilindros de cristal o de materiales plásticos transparentes cada vez más delgados y flexibles, que hoy se conocen como fibras ópticas. Estas progresivamente se aplicaron a la iluminación, la transmisión de imágenes y las telecomunicaciones(37), y permitieron que desde mediados de la década de 1950 los endoscopios experimentaran importantes avances: reducción de su diámetro, flexibilidad y mejor calidad de la imagen.

En cuanto a esta última, hasta entonces los endoscopios tenían varias lentes colocadas a lo largo de un cilindro metálico hueco lleno de aire que daban una imagen pequeña, de colorido y nitidez insuficientes.

Harold Horace Hopkins fue un óptico inglés muy destacado, que entre otras contribuciones perfeccionó el lente zoom para las cámaras de televisión de la British Broadcasting Company(38). Conocía la necesidad de mejorar la imagen de los endoscopios y para ello, en la década de 1960, rellenó el espacio de aire entre las lentes de los endoscopios rígidos con piezas de cristal. Obtuvo así una larga lente compuesta cilíndrica de pequeño diámetro e imagen de excelente nitidez, brillo y color. Se denominó rod lens (lente varilla o rodillo) y se la conoce como lente Hopkins. Se emplea en los endoscopios rígidos utilizados en la cirugía mínimamente invasiva, que permiten la visión en el eje óptico del sistema o en diferentes ángulos.

En 1895, en Francia, Henri Saint-Rene intentó transmitir imágenes a través de varillas de vidrio. En la década de 1920, en Inglaterra, John Logie Baird patentó esa idea y en Estados Unidos Clarence W. Hansell la de usarla para transmitir facsímiles. En 1930, el estudiante de Medicina de Munich Heinrich Lamm transmitió la imagen del filamento de una lámpara incandescente a través de ellas; en Estados Unidos se le negó la patente porque existía la de Hansell.

En la década de 1950 varios investigadores (Holger Moeller en Dinamarca [1951], Harold Hopkins de Londres y Abraham van Heel de Delft [1954]) independientemente revistieron fibras ópticas con materiales de distinto índice de refracción para mejorar sus propiedades de transmisión de imágenes, con lo que iniciaron la "revolución" de las fibras ópticas.

El médico Basil Hirschowitz de la Universidad Ann Arbor de Michigan, Estados Unidos, trabajaba en el desarrollo de un gastroscopio práctico. El 1956, luego de visitar a Hopkins, junto con su colaborador Lawrence Curtiss, logró fabricar haces de fibras ópticas coherentes de 5 mm de diámetro, muy flexibles y con buenas propiedades de transmisión de luz e imágenes con los que en enero de 1957 construyó el primer fibrogastroscopio(30).

La principal aplicación actual de las fibras ópticas es en las telecomunicaciones. Su implementación debió esperar un desarrollo teórico y tecnológico que comenzó en la década de 1950, duró cerca de 30 años y tuvo los aportes del físico sino-británico Charles K. Kao, que recibió por ello en forma compartida el Premio Nobel de Física 2009(1).

1960 en adelante. Encuentro entre cirugía y endoscopía

En 1901, George Kelling, en Dresden, para estudiar el efecto hemostático del neumoperitoneo a alta presión sobre las hemorragias digestivas introducía un cistoscopio en el peritoneo de perros, maniobra que llamó "celioscopía". Entre 1901 y 1910 la realizó con éxito en dos pacientes, pero no lo publicó(31).

Entre 1910 y 1911 el internista de Estocolmo Hans Cristian Jacobaeus publicó las primeras laparoscopías y toracoscopías(39), y en 1911 Bertram M. Bernheim, en Baltimore, que aparentemente no conocía las observaciones de Kelling ni las de Jacobaeus, realizó la primera "organoscopía" en Estados Unidos con un proctoscopio de media pulgada de diámetro iluminado con la luz solar. En la década de 1960 las laparoscopías diagnósticas tenían amplia aceptación.

Pero hasta entonces, un siglo y medio después de Bozzini, la mayor parte de los cirujanos no habían prestado mayor atención a los avances de la endoscopía. Con su pragmatismo no consideraban que algo que con bastantes dificultades les daba una visión reducida y en penumbra de lo que ellos veían con detalle y claridad a simple vista y podían palpar y manipular, pudiera llegar a ser una alternativa válida.

Hacia 1960, en Kiel, el ginecólogo Kurt Karl Stephan Semm(31) comenzó a emplear la laparoscopía en el diagnóstico ginecológico. Hacia 1970 pasó a llamarla pelviscopía para diferenciarla de la laparoscopía del abdomen superior que hacían los internistas. Y como percibió que tenían posibilidades terapéuticas no explotadas que podían evitar muchos inconvenientes de la cirugía laparotómica, en un largo proceso y con singular tesón imaginó y realizó muchas de las primeras operaciones ginecológicas laparoscópicas: enucleaciones de quistes ováricos, miomectomías, adhesiolisis, y tratamiento de embarazos ectópicos. También adaptó técnicas básicas de la cirugía a la cirugía laparoscópica como el nudo extracorpóreo (1978), y realizó la primera apendicectomía completamente laparoscópica (1981).

Y, además, como poseía inventiva, era ingeniero y copropietario de una fábrica de equipamiento médico en Munich, diseñó y fabricó muchos aparatos e instrumentos específicos para la cirugía laparoscópica, entre ellos:

- Un insuflador automático de CO2 que registra la presión del gas intraabdominal y mide el flujo de inyección (1960).

- Una fuente externa de luz fría (1964).

- Cables de fibra óptica para conducir la luz (1974).

- Un sistema de irrigación y aspiración para el lavado de cavidades.

- Otros múltiples instrumentos, entre ellos el gancho (hook) (1988).

- Y un simulador (pelvi-trainer = laparo-trainer) para enseñar y practicar técnicas de cirugía laparoscópica (1985).

Viajó incansablemente para mostrar las ventajas de la cirugía laparoscópica en ginecología y cirugía general, y publicó libros y atlas que son la biblia de la laparoscopía diagnóstica y de la cirugía laparoscópica. Pero inicialmente, tanto en Europa como en Estados Unidos, sus operaciones laparoscópicas no eran consideradas éticas, y por muchos años fue rechazado, despreciado, acusado de sinsentido y locura y hasta se solicitó que se le suspendiera la autorización para ejercer.

Hacia 1980, la cirugía laparoscópica comenzó a considerarse aceptable, poco a poco se impuso en todo el mundo y Semm alcanzó una enorme y merecida reputación.

Se atribuye a John Wickham, de Londres, en 1986, haber acuñado la denominación cirugía mínimamente invasiva.

La historia de esta cirugía es pues reciente y ha sido objeto de incontables relatos y análisis en revistas, libros y sitios de Internet.

Entre los cirujanos generales inicialmente encontró mucha resistencia, porque los obligó a familiarizarse con otra forma de iluminar y ver el campo operatorio, a emplear instrumentos más específicos, más variados, más costosos y más frágiles, a renunciar a la palpación directa de los órganos, a realizar las viejas técnicas en una forma diferente, a aprender otras, y a cambiar ciertos paradigmas que creían inmutables. Pero valoraron la importancia de sus desarrollos e iniciaron un proceso de incorporación, validación y diversificación que está en curso(40).

1970 en adelante. La retina electrónica

La calidad de la imagen de los fibroendoscopios dependía del número de fibras ópticas y se deterioraba progresivamente por rotura, por lo que rápidamente se comenzó a buscar una tecnología alternativa para la imagen.

En 1970 en Nueva Jersey, Estados Unidos, Willard S. Boyle y George E. Smith iniciaron investigaciones para encontrarla con la electrónica. Estas los condujeron a la invención de los dispositivos de carga acoplada o Charge Coupled Device (CCD), verdaderas "retinas electrónicas" que los hizo merecedores de parte del Premio Nobel de Física 2009(1). Estos dispositivos son circuitos electrónicos integrados y miniaturizados (microchips), que transforman la imagen que se proyecta en su superficie fotosensible en una secuencia de señales eléctricas que son integradas por un procesador en una imagen digital estática o dinámica, monocromática o en color, formada por un número cada vez más elevado de pixels (acrónimo del término inglés picture element o elemento de imagen) que determinan la definición de la misma. Esa imagen puede ser contemplada en monitores por innumerables observadores, grabada, editada, procesada, impresa, copiada o trasmitida a distancia.

En endoscopía los CCD tienen dos aplicaciones principales.

Se han colocado en la extremidad interna de los endoscopios, lo que dio lugar a los videoendoscopios que no necesitan haces de fibras ópticas para la transmisión de la imagen.

Y se emplean en microcámaras de video, actualmente de muy alta definición, que se acoplan al ocular de las lentes Hopkins utilizadas en los procedimientos diagnósticos o terapéuticos.

Ambas aplicaciones han permitido que hoy los endoscopistas y quienes realizan procedimientos de cirugía mínimamente invasiva trabajen en una posición ergonómica observando en uno o varios monitores de televisión imágenes del campo operatorio magnificadas y de alta calidad, y no como sus predecesores, que debían estar inclinados forzadamente sobre el paciente para acercar uno de sus ojos al ocular de su endoscopio y eran los únicos observadores del campo de trabajo.

Summary

Towards 1880, surgery conquered the deepest areas in the human body, and thus the problem of illuminating them well arose. Operating rooms were placed in spots where they would receive more sunlight, windows and skylights were built and sources of artificial light were installed - although none of this was a solution.

In 1919, Louis Verain designed an electric lamp that projected a beam of homogeneous light, intense and with attenuated shadows named scialitic lamp. It was the paradigm of surgery illumination for sixty years and it influenced changes in hospital design.

In spite of the fact that in 1806 Bozzini started performing endoscopy under candle light, in 1875 Nitze had designed a self-illuminated cytoscope and in 1910 internists and gastroenterologists introduced endocopes in the serous cavities for diagnostic purposes, it was not until the 1960s that Kart Semm became interested in these technological progress to apply them to gynecology. He added therapeutic uses to them and in 1980 they spread out to be used in most surgeries, what resulted in minimally invasive surgical procedures. Today it uses instruments that comprise modern illumination technology (external cold light sources and fibre optic beams conducting light) and sources of indirect sight (rod lenses associated to video micro-cameras with charge-coupled devices or CCD) that enable illumination and visualization of the surgical field a lot more clearly than with the classic laparotomies.

Resumo

Em 1880, a cirurgia conquistou as regiões profundas do corpo, surgindo o problema de sua iluminação. As salas de operação foram colocadas em lugares nos quais pudessem receber mais luz solar: perto das janelas, clarabóias e próximas de fontes de luz artificial, porém nenhuma dessas medidas solucionou o problema.

Em 1919, Louis Verain construiu a lâmpada cialítica, uma lâmpada elétrica que projetava um feixe de luz homogênea, intensa com sombras atenuadas. Durante 60 anos foi o paradigma de iluminação em cirurgia influenciando a arquitetura hospitalar.

Em 1806 Bozzini iniciou a endoscopia projetando luz de velas, em 1875 Nitze construiu um cistoscópio com luz própria; desde 1910 internistas e gastroenterologistas introduziam endoscópios nas cavidades serosas para realizar diagnósticos, porém foi necessário esperar até a década de 60 para que Kurt Semm mostrasse interesse por estes progressos, e os aplicara à ginecologia dando-lhes ademais possibilidades terapêuticas, e até 1980 para que se expandisse a grande parte da cirurgia, transformando-a em cirurgia minimamente invasiva. Atualmente esse tipo de cirurgia usa instrumentos que associam modernas tecnologias de iluminação (fontes externas de luz fria e feixes de fibras ópticas), e de visão indireta (lentes vareta associadas a microcâmaras de vídeo com dispositivos de carga acoplada ou CCD), que permitem iluminar e visualizar o campo operatório de forma mais clara que usando as clássicas laparotomias.

Bibliografía

1. Royal Swedish Academy of Sciences. Scientific Background on the Nobel Prize in Physics 2009: two revolutionary optical technologies. Disponible en: http://nobelprize.org/nobel_prizes/physics/laureates/2009/sciback_phy_09.pdf [Consulta: 16/11/2009].

2. Kompanje EJ. A remarkable case in the history of obstetrical surgery: a laparotomy performed by the Dutch surgeon Abraham Cyprianus in 1694. Eur J Obstet Gynecol Reprod Biol 2005; 118(1): 119-23.

3. Sabiston DC Jr. Presidental address: major contributions to surgery from the South. Ann Surg 1975; 181(5): 487-507.

4. Graham H. Historia de la cirugía. Barcelona: Iberia, 1942.

5. Gil Pérez JI. La obra de Cayetano Garviso (1807- post.1871): cirujano vasco-navarro liberal en América. Barcelona: Seminari Pere Mata. Universitat de Barcelona, 2001.

6. Mañé Garzón F. Primer curso de fisiología experimental dictado por Claude Bernard: Vilardebó primer médico uruguayo. Montevideo: Fundación Beisso Fleurquin, 1989.

7. Massachusetts General Hospital. The Ether Dome: the restoration of an icon. Disponible en: http://neurosurgery.mgh. harvard.edu/history/restore.htm [Consulta: 12/12/2009].

8. Guy's Hospital. The old Operating Theater: details of the oldest emergency room in Britain. Disponible en: http://www.thegarret.org.uk/oot.htm [Consulta: 12/12/2009].

9. Costantini HJ. L'éclairage des salles d'opérations. In: Vérain L. Le scialytique de Vérain. Communication présentée au Groupe Algérien de la Société des Ingénieurs Civils de France. Creusot-Loire: Biblioteca de la Société des Ingénieurs Civils, 1951: 3-5.

10. Philadelphia Museum of Art. Thomas Eakins's The Gross Clinic. Disponible en: http://www.philamuseum.org/research/22-398-561-450.html [Consulta: 22/12/2009].

11. Museé d'Orsay. Henri Gervex: avant l'opération dit aussi Le Docteur Péan enseignant à l'hôpital Saint-Louis sa découverte du pincement des vaisseaux Disponible en: http://www.musee-orsay.fr/es/colecciones/obras-comentadas/pintura/commentaire_id/before-the-operation-3074.html?tx_ commentaire_pi1[pidLi]=509&tx_commentaire_pi1[from]=841 &cHash= 7f9941d09e [Consulta: 20/12/2009].

12. University of Pennsylvania. Medical Class of 1889: commissioning of Thomas Eakins to paint "The Agnew Clinic". Disponible en: http://www.archives.upenn.edu/histy/features/1800s/1889med/agnewclinic.html [Consulta: 22/12/2009].

13. New York University. School of Medicine. Seligmann, AF. Theodor Billroth Operating (Billroth im Hörsaal). Disponible en: http://litmed.med.nyu.edu/Annotation?action= view&annid=10332 [Consulta: 20/11/2009].

14. Salcman M. Ernst von Bergmann performs a brain operation by Franz Skarbina. Neurosurgery 1996; 38(6): 1254-5.

15. Collect Medical Antiques. Operation using ether for anesthesia in the operating room of the Massachusetts General Hospital in Boston (1847). Disponibe en: http://collectmedicalantiques.com/gallery/anesthesia-and-asepsis [Consulta: 9/9/2009].

16. The Alan Mason Chesney. Medical Archives of the Johns Hopkins Medical Institutions. Disponible en: http://www. medicalarchives.jhmi.edu/ [Consulta: 30/10/2009].

17. Fototeca (foto de 1921) de la Bibiloteca y del Departamento de Historia de la Medicina de la Facultad de Medicina. Universidad de la República. Uruguay.

18. Campbell D. El desierto de cristal: viajes de un naturalista a la Antártida. Buenos Aires: Emecé, 1996.

19. Ilin M. Historia del alumbrado y del automóvil. Montevideo: Pueblos Unidos, 1946.

20. Kassel D. Des apothicaires dans leur siècle, le XVIIIe. Disponible en: http://www.ordre.pharmacien.fr/upload/Syntheses/99.PDF [Consulta: 14/9/2009].

21. Yerguin D. La historia del petróleo. Buenos Aires: Javier Vergara, 1991.

22. Lister Sutcliffe G. The principles and practice of modern house construction: chapter 3. Gas Burners. London: Blackie & Son, 1900. Disponible en: http://chestofbooks.com/architecture/House-Construction/Chapter-III-Gas-Burners.html[Consulta: 18/9/2009].

23. Williams B. A History of Light and Lighting. Disponible en: http://www.mts.net/~william5/history/hol.htm [Consulta: 28/9/2009].

24. Dreyer F. Histoire de l'hôpital. L'éclairage des salles d'opération aux XIXe et XXe siècles: l'apparition du scialytique. Disponible en: http://www.insitu.culture.fr/pdf/dreyer-1198.pdf [Consulta: 10/9/2009].

25. Neidhardt A, Neidhardt M. Genèse du bloc opératoire Saint-Joseph ou l'alliance de la lumière et de l'antisepsie. Disponible en: http://www.chu-besancon.fr/museum/Histoire/cinquantenaire/lumiere_antiseptie.htm [Consulta: 13/9/ 2009].

26. Howell J, Schroeder H. History of the incandescent lamp. New York: The Maqua Company, 1927. Disponible en: http://www.archive.org/stream/historyofincande00howe/historyofincande00howe_djvu.txt [Consulta: 10/11/2009].

27. Alex Peck Medical. Antiques Archives. A c. 1900 photograph of the operating theater at Jefferson Medical College, Philadelphia. Disponible en: http://antiquescientifica.com/photo_ operating_theater_Jefferson_Medical_College_c._1900.jp.jpg [Consulta: 20/3/2010]

28. Verain L. La naissance du Scialytique. Communication présentée au Groupe Algérien de la Société des Ingénieurs Civils de France. Creusot-Loire: Biblioteca de la Société des Ingénieurs Civils, 1951: 6-12.

29. Letters, notes and answers. Br Med J 1930; 1(3612): 627-8.

30. Vilardell F. Digestive endoscopy in the second millenium: from lichtleiter to echoendoscopy. Madrid: Aula Médica, 2006. Disponible en: http://books.google.com.uy/books?id= bu1l1yS156oC&printsec=frontcover&dq=Digestive+ Endoscopy+in+the+second+millenium&hl=es&ei= iHAcTs6SLOLq0gGvpfTGBw&sa=X&oi=book_result&ct= result&resnum=1&ved=0CCwQ6AEwAA#v=onepage&q&f=false [Consulta: 3/12/2009].

31. Zucker KA. Surgical Laparoscopy. St Louis: Quality Medical Publishing, 1991.

32. Verger-Kuhnke AB, Reuter MA, Beccaria ML. La biografía de Philipp Bozzini (1773-1809) un idealista de la endoscopia. Actas Urol Esp 2007; 31(5): 437-44.

33. Peña MA. Una breve historia de la invención del espejillo laríngeo y del espejo frontal. Rev Otorrinolaringol Cir Cabeza Cuello 2008; 68(1): 91-4.

34. Rizzi, M. Invención del espejillo laríngeo. An Otorrinolaringol Urug 1986; 52(1): 11-2.

35. Willemot J. Naissance et dévelopement de l' otorhinolaryngologie dans l'histoire de la médicine. Acta Otorhinolaryngol Belg 1981; 35(Suppl 3): 393-1044.

36. Verger-Kuhnke AB, Beccaría ML. La biografía de Maximilian Nitze (1848-1906) y su contribución a la urología. Actas Urol Esp 2007; 31(7): 697-704.

37. Hecht J. City of light: the story of fiber optics. New York: Oxford University Press, 1999.

38. Morgenstern L. Harold Hopkins (1818-1995): "Let there be light...". Surg Innov 2004; 11(4): 291-2.

39. Hatzinger M, Kwon ST, Langbein S, Kamp S, Häcker A, Alken P. Hans Christian Jacobaeus: inventor of human laparoscopy and thoracoscopy. J Endourol 2006; 20(11): 848-50.

40. Kehlet H. Surgical stress response: does endoscopic surgery confer an advantage? World J Surg 1999; 23(8): 801-7.

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License