SciELO - Scientific Electronic Library Online

 
vol.17 número1PrefaceDynamic Scheduling based on Particle Swarm Optimization for Cloud-based Scientific Experiments índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Links relacionados

Compartir


CLEI Electronic Journal

versión On-line ISSN 0717-5000

Resumen

DANOY, Grégoire; SCHLEICH, Julien; BOUVRY, Pascal  y  DORRONSORO, Bernabé. A Parallel Multi-Objective Cooperative Coevolutionary Algorithm for Optimising Small-World Properties in VANETs. CLEIej [online]. 2014, vol.17, n.1, pp.2-2. ISSN 0717-5000.

Cooperative coevolutionary evolutionary algorithms differ from standard evolutionary algorithms’ architecture in that the population is split into subpopulations, each of them optimising only a sub-vector of the global solution vector. All subpopulations cooperate by broadcasting their local partial solutions such that each subpopulation can evaluate complete solutions. Cooperative coevolution has recently been used in evolutionary multi-objective optimisation, but few works have exploited its parallelisation capabilities or tackled real-world problems. This article proposes to apply for the first time a state-of-the-art parallel asynchronous cooperative coevolutionary variant of the non-dominated sorting genetic algorithm II (NSGA-II), named CCNSGA-II, on the injection network problem in vehicular ad hoc networks (VANETs). This multi-objective optimisation problem, consists in finding the minimal set of nodes with backend connectivity, referred to as injection points, to constitute a fully connected overlay that will optimise the small-world properties of the resulting network. Recently, the well-known NSGA-II algorithm was used to tackle this problem on realistic instances in the city-centre of Luxembourg. In this work we analyse the performance of the CCNSGA-II when using different numbers of subpopulations, and compare them to the original NSGA-II in terms of both quality of the obtained Pareto front approximations and execution time speedup.

Palabras clave : Multi-objective optimisation; VANETs; small-world; topology control.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons