SciELO - Scientific Electronic Library Online

 
vol.15 número3Facial Recognition Using Neural Networks over GPGPUParallel implementations of the MinMin heterogeneous computing scheduler in GPU índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Links relacionados

Compartir


CLEI Electronic Journal

versión On-line ISSN 0717-5000

Resumen

VERGHELET, Paula; FERNANDEZ SLEZAK, Diego; TURJANSKI, Pablo  y  MOCSKOS, Esteban. Using distributed local information to improve global performance in Grids. CLEIej [online]. 2012, vol.15, n.3, pp.7-7. ISSN 0717-5000.

Grid computing refers to the federation of geographically distributed and heterogeneous computer resources. These resources may belong to different administrative domains, but are shared among users. Every grid presents a key component responsible for obtaining, distributing, indexing and archiving information about the configuration and state of services and resources. Optimizing tasks assignations and user requests to resources require the maintenance of up-to-date information about the grid. In large scale Grids, the dynamics of the resource information cannot be captured using a static hierarchy and relying in manual configuration and administration. It is necessary to design new policies for discovery and propagation of resource information. There is a growing interest in the interaction of Grid Computing and the Peer to Peer (P2P) paradigm, pushing towards scalable solutions. In this work, starting from the Best-Neighbor policy based on previously published ideas, the reasons behind its lack of performance are explored. A new improved Best-Neighbor policy are proposed and analyzed, comparing it with Random, Hierarchical and Super-Peer policies.

Palabras clave : Resource Information; Information Policies; Grid Computing; Best Neighbor.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons