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Abstract

Context: Mobile applications support a set of user-interaction features that are inde-
pendent of the application logic. Rotating the device, scrolling, or zooming are examples
of such features. Some bugs in mobile applications can be attributed to user-interaction
features. Objective: This paper proposes and evaluates a bug analyzer based on user-
interaction features that uses digital image processing to find bugs. Method: Our bug
analyzer detects bugs by comparing the similarity between images taken before and after
a user-interaction. SURF, an interest point detector and descriptor, is used to compare
the images. To evaluate the bug analyzer, we conducted a case study with 15 randomly se-
lected mobile applications. First, we identified user-interaction bugs by manually testing
the applications. Images were captured before and after applying each user-interaction
feature. Then, image pairs were processed with SURF to obtain interest points, from
which a similarity percentage was computed, to finally decide whether there was a bug.
Results: We performed a total of 49 user-interaction feature tests. When manually test-
ing the applications, 17 bugs were found, whereas when using image processing, 15 bugs
were detected. Conclusions: 8 out of 15 mobile applications tested had bugs associated
to user-interaction features. Our bug analyzer based on image processing was able to
detect 88% (15 out of 17) of the user-interaction bugs found with manual testing.
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1 Introduction

The variety of mobile devices and their operating systems, known as fragmentation [1, 2, 3, 4], represents a
testing challenge nowadays since mobile applications may behave differently regarding usability and perfor-
mance depending on the device they are run on. Therefore, the number of tests required to verify that an
application works as expected on existing mobile devices is increasingly high.

The behavior of smart mobile devices is highly interactive [5] and mobile applications are therefore
affected by this interaction. Users perform actions on their applications and the applications respond to
these actions. Several studies state the importance of the context where mobile applications are executed to
ensure their quality [6, 7, 8]. According to Amalfitano and Fasolino [9], the quality of mobile applications is
lower than expected due to rapid development processes where the activity of software testing is neglected
or carried out superficially. To meet the growing demand for high quality applications, software testing and
automation are key players. Zaeem et al. [10] conducted a study of defects in mobile applications, where
they found that a significant fraction of bugs can be attributed to a class of features called user-interaction.
They define a user-interaction feature as:

An action supported by the mobile platform, which enables a human user to interact with a
mobile app, using the mobile device and the graphical user-interface (GUI) of the app. Further,
an interaction feature is associated with a common sense expectation of how the mobile app
should respond to that action.

Common user-interaction features are: double rotation, killing and restarting, pausing and resuming,
back button functionality, opening and closing menus, zooming in, zooming out, and scrolling. Mobile
applications support user-interaction features associated with content presentation or navigation that are
independent of the application logic. Automated testing of user-interaction features facilitates the search for
defects in a variety of mobile applications.

In this paper, we propose a bug analyzer based on user-interaction features that detects bugs in mobile
applications. Our approach raises a novel way of testing mobile applications to expose bugs caused by
user-interaction features.

We seek to answer the following research questions:

RQ1: Based on user-interaction features, how often do bugs appear?

RQ2: How well can digital image processing detect bugs based on user-interaction features?

The main contributions of this paper are (i) the study of real mobile application bugs based on user-
interaction features and (ii) the use of image processing to automatically detect user-interaction bugs.

This paper is organized as follows. Section 2 presents the background and related work, section 3 describes
the bug analyzer in the context of an automated testing framework, section 4 explains the methodology,
section 5 shows the findings and discussion, and section 6 presents the conclusions and future work.

2 Background and Related Work

In this section, we present an overview of Android activities, user-interaction features, and related work.

2.1 Android Activities

An Activity is an application component which gives the user a screen. In this screen, the user can interact
with the application. An application usually consists of multiple activities that are loosely bound to each
other. Typically, there is a main activity which is presented to the user when launching the application for
the first time. One activity can start other activities. When a new activity starts, it takes the focus, and the
previous activity is stopped and pushed onto the back stack [11]. Figure 1 shows the paths an activity might
take between states. The rectangles represent the callback methods developers can implement to perform
operations when an activity transitions between states. A brief description of each state is given next.

• onCreate: the activity is being created.

• onStart: the activity is being started.

• onResume: the activity is about to become visible.
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Listing 1: Overriding the onPause method.

@Override
protected void onPause ( ) {

i f (mCamera!=null ){
mCamera . r e l e a s e ( ) ;
mCamera=null ;

}

userName . setText ( ‘ ‘ username” ) ;
}

• onPause: another activity is taking focus and the current activity is about to be “paused”.

• onStop: the activity is no longer visible.

• onDestroy: the activity is about to be destroyed.

In association with other activities, the task activity and back stack affect the lifecycle of an activity.
Implementing callback methods is very important to ensure the quality of an application. Listing 1 shows
an example of the onPause method overriding. In this example, if the application was using the camera, it
releases it since it will not be needed when paused and other activities may use it. The instruction where the
userName object is set with a text string is an incorrect use of the onPause method, since the data contained
in the userName object is lost when the activity is paused.

Figure 1: The activity lifecycle in Android from [11].

2.2 User-Interaction Features

Zaeem et al. [10] defined the following eight user-interaction features (abbreviations are shown in parenthe-
sis):
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1. Double rotation (dr): Rotating a mobile device and then rotating it back to the original orientation.
With this action the application should stay in the same state.

2. Killing and restarting (kr): The operating system might choose to kill and then restart an app for
various reasons (e.g., low memory). Similar to double rotation, the app should retrieve its original
state and view.

3. Pausing and resuming (pr): The app can be paused (e.g., by hitting the Android Home button) and
then resumed.

4. Back button functionality (bb): The Back button is a hardware button on Android devices which takes
the app to the previous screen.

5. Opening and closing menus (menu): The hardware Menu button on Android devices opens and closes
custom menus that each app defines.

6. Zooming in (zi): Zooming into a screen should bring up a subset of what was originally on the screen.

7. Zooming out (zo): Zooming out from a screen should result in a superset of the original screen.

8. Scrolling (scr): Scrolling down (or up) should display a screen that shares parts of the previous screen.

The user-interaction features mentioned above affect the states of the activities. Changes in the activities’
states can generate bugs in the application behavior.

2.3 Related Work

The creation of automated testing tools has been increasing; here, some tools are described.
Dynodroid [12] uses model learning and random testing techniques for generating inputs to mobile appli-

cations. It is based on an “observe-select-execute” principle that efficiently generates a sequence of relevant
events. It generates both user interface and system events.

MobiGUITAR [13] uses model learning and model based testing techniques. The application model is
created using an automated reverse engineering technique called GUI Ripping. Test cases are generated
using the model and test adequacy criteria. These test cases are sequence of events.

A3E [14] uses model based testing techniques. This tool systematically explores applications while they
are running on actual phones. A3E uses a static, taint-style, data-flow analysis on the application bytecode
in a novel way to construct a high-level control flow graph that captures legal transitions among activities
(application screens). It then uses this graph to develop an exploration strategy named Targeted Exploration,
and uses a strategy named Depth-first Exploration.

SwiftHand [15] generates sequence of test inputs for Android applications. It uses machine learning
to learn a model of the application during testing, the learned model to generate user inputs that visit
unexplored states of the application, and the execution of the applications on the generated inputs to refine
the model.

Orbit [16] is based on a grey-box approach for automatically extracting a model of the application being
tested. A static analysis of the application source code is used to extract the set of user actions supported
by each widget in the GUI. Then, a dynamic crawler is used to reverse engineer a model of the application,
by systematically exercising extracted actions on the live application.

3 The Bug Analyzer in Context

The bug analyzer presented here is a part of broader testing framework that we proposed in [17]. Such
automated testing framework is also based on user-interaction features but includes more components than
the bug analyzer. Figure 2 shows an overview of this framework, which is composed of an exploration
environment, an inference engine, a bug analyzer, and a bug repository. The bug analyzer proposed in [17]
combines GUI specifications and historical bug information with the results of image processing. However,
in this work we limit the scope of the bug analyzer to use only image processing information. Integration of
GUI and bug information will be addressed in a future work.

Though the focus of this paper is the bug analyzer (dotted-line components on figure 2), in the interest
of completeness, we describe each of the framework components below.
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Figure 2: Overview of the automated testing framework, context of the bug analyzer.

3.1 Exploration Environment

The exploration environment is responsible for creating a model of the application. This model is used
to explore the application automatically. SwiftHand [15] automatically creates a model and explores the
application. We are modifying SwiftHand to allow the inclusion of user-interaction features while it explores
the model of the application. This user-interaction features are included randomly. Also, we are adding the
functionality to capture images and capture GUI information before and after the execution of the user-
interaction features. These images and the GUI information are sent to the bug analyzer to find possible
bugs in the application.

3.2 Bug Analyzer

The bug analyzer receives information on the activity being explored. Two images are captured when we
apply the user-interaction feature. The first image is captured before applying a user-interaction feature
being tested, and the second image is captured after applying. We used the interest point detector and
descriptor SURF [18] to get interest points in each image. The interest points with the specifications of GUI
are used to determine whether there are bugs produced by the user-interaction feature applied. If bugs are
found, they are stored in the repository of historical bug information.

GUI information is used to identify widgets that generated the bug. GUI information is obtained before
and after the applying of a user-interaction feature being tested.

3.3 Inference Engine

The inference engine is responsible for selecting the user-interaction features to be tested in the application
as well as determine the order in which they will be tested. For this version of the framework, it is using a
random selection of user-interaction features to be tested in applications.

Once the historical bug information is stored in the repository, the inference engine uses this information
to select the user-interaction features and the order in which they will be tested in applications.

3.4 Bug Repository

The framework has a repository for storing historical bug information. In the future, the inference engine to
create test cases could use historical bug information. Our inference engine, using machine learning, consults
this repository and makes inferences about how and which user-interaction features to apply in new testing.

3.5 Example

We selected the user-interaction feature “Double rotation” to show the preliminary results obtained with
the proposed bug analyzer. Double rotation feature expresses the act of rotating a mobile device and then
rotating it back to the original orientation. With this action the application should stay in the same state.
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When we perform the double rotation action, the active activity changes from resumed to paused state,
meaning this activity is restarted and resumed. During this process the application may present some
defects with setting data to different application resources.

3.5.1 Image Capture

The capture of two screens of an application was developed and used by us for the purpose of testing. In
this case the user typed the username “Abel”. We captured an image of the screen, shown in Figure 3(a).
We applied the “Double rotation” feature. We again captured an image of the screen, shown in Figure 3(b).
The username “Abel” was changed to the text “username”. This type of bug is very common in mobile
applications.

(a) (b)

Figure 3: user-interaction feature “Double rotation”.

3.5.2 Interest Point Detector and Descriptor

Interest points are places or points within the image with a strong characterization and consistent reference
such as corners, edges and interceptions. The way to carry out the identification and subsequent comparison
of interest points is through their descriptors. Descriptors are feature vectors calculated on each of the
interest points, in other words, a descriptor is a numerical description of the image area referred to by an
interest point. Particularly, SURF [18] uses a similarity threshold based matching strategy, whereby two
regions are matched if the Euclidean distance between their descriptors is below a threshold.

We used the SURF algorithm included in the OpenCV library1, version 2.4.10. This library uses a
K-nearest neighbor search for obtaining the similarity of the images.

The first task was to apply SURF to the captured images of before and after the “Double rotation”
feature. The red circles in the images of Figure 4(a) and Figure 4(b) represent the interest points detected
by SURF. It can be seen that most of the points of interest are focused where there are alphanumeric
characters. We focused on the different interest points between the two images. Different interest points
between the image captured before and the image captured after we applied double rotation are shown in
Figure 4(c) and Figure 4(d). We found this interest points by doing a match between all the interest points

1http://www.opencv.org
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(a) (b)

(c) (d)

Figure 4: Interest points found with SURF.
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contain on each image, and we can see the that different interest points between both images are largely
concentrated on the characters of the text field.

We obtained the following data by applying the SURF algorithm: interest points in Figure 4(a) were 308,
interest points in Figure 4(b) were 267, extraction time was 333.395 milliseconds, amount of similar interest
points was 41, and percentage of similarity between images was 79.0941%. This value suggested important
differences between the two images due to bugs in the “Double rotation” feature.

3.5.3 GUI Information

Having located the different interest points between the two images, the next step is to identify what
controls are found in those coordinates to identify possible changes to these controls, given that we can
obtain the absolute location (coordinates), of each one of these different interest points found on the image
after the ”double rotation” feature was executed. To perform this task, information from the GUI of the
application should be used. With the GUI information we can determine the object type where the bugs
were generated. The properties of these objects should be analyzed to determine if there were variations in
their configurations.

When we obtain the different interest points from the analysis made with SURF, these interest points
contain coordinates, and given that the images that we are using for analyzing the effects of the user-
interaction feature have exactly the same resolution as the size of the screen of the mobile device or emulator
used while exploring the app, we can use these coordinates to know exactly where in the user interface layout
is located the widget that is apparently showing a bug.

To do this we obtain the absolute coordinates of each widget and the properties of width and height of
each one of the widgets using the GUI structure of the application. Knowing this we can say exactly where
in the screen is the widget located, so using this we can know exactly how many different interest points
were found in the area where the widget is located, and decide if the amount of these is high enough to
consider that this widget might be showing a bug.

On the other hand, we can, in most cases, know perfectly when a widget is showing a bug by obtaining
and comparing its properties before and after the user interactions are processed. And since we have the
absolute coordinates where each widget is located, we can use this to confirm that the widget considered
bugged is indeed a widget that is showing some kind of bug.

4 Methodology

We conducted a case study in two phases. In the first phase we found bugs based on user-interaction features
using manual testing. In the second phase we found bugs using digital imaging processing.

4.1 First Phase: Detecting Bugs Using Manual Testing

We randomly selected 15 mobile applications from the F-Droid catalogue2. F-Droid is an installable cata-
logue of free and open source software applications for the Android platform. We used manual testing to
find bugs based on the user-interaction features described in section 2.2. However, out of the eight user-
interaction features therein presented, only four were used and tested in this study: double rotation, killing
and restarting, pausing and resuming, and back button functionality. The other four (opening and closing
menus, zooming in and out, and scrolling) were out of the scope since their behavior needs to be adjusted to
fit in our framework. This is a limitation of our current version of the framework. We used manual testing
for approximately 20 minutes in each application and we randomly introduced user-interaction features. We
captured images before and after applying each user-interaction feature. We reported if the introduction of
the user-interaction feature generated a bug.

4.2 Second Phase: Detecting Bugs using Digital Imaging Processing

When we were using manual testing to find bugs, we captured an image before and after each user-interaction
feature was tested. We used images to find bugs using digital imaging processing. We used SURF (interest
point detector and descriptor) to find different interest points between each pair of images. Based on our
experience we defined a threshold to compare the percentage similarity between each pair of images. If
the similarity percentage between each pair of images was below this threshold we considered that the
user-interaction feature generated a bug. Otherwise, the user-interaction feature did not generate any bugs.

2https://f-droid.org
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5 Results and Discussion

5.1 RQ1: Based on user-interaction features, how often do bugs appear?

It is very important to clarify that we reported these bugs based on the definition and behavior expected from
the user-interaction features. We selected 15 mobile applications and applied manual testing introducing
different user-interaction features. Each user-interaction feature was tested independently. Each feature
user-interaction feature is composed of a sequence of events. To define the sequence of events for each user-
interaction, we first conducted a quick exploration of the application to understand the application logic.
Then we selected the user- interaction feature to test and defined the sequence of events for it. The sequence
of events included capturing an image before entering the user-interaction and capturing an image after
entering the user-interaction feature. We tested 49 user-interaction features in total. Sequence of events
used for each user-interaction feature are available in one external file3.

Table 1: Comparison of manual testing and digital imaging processing.

Number App Name Test Id UIF Type Manual
testing,
Bug?

Digital imaging
processing, Bug?

Percentage
Similarity

01 aagtl pair-000 dr yes yes 86.3
02 aagtl pair-001 pr yes yes 76.85
03 aagtl pair-002 kr yes yes 42.86
04 ApkTrack pair-000 dr yes yes 43.14
05 ApkTrack pair-001 pr no yes 89.86
06 betrains-nmbssncb-

belgium
pair-000 dr no yes 93.92

07 betrains-nmbssncb-
belgium

pair-001 dr no no 99.33

08 betrains-nmbssncb-
belgium

pair-002 pr no no 96.05

09 betrains-nmbssncb-
belgium

pair-003 kr no yes 93.92

10 crickets-alarm pair-000 dr no no 98.96
11 crickets-alarm pair-001 dr yes yes 94.54
12 crickets-alarm pair-002 dr yes yes 91.08
13 defcol pair-000 dr no no 100
14 defcol pair-001 pr yes yes 86.13
15 droidupnp pair-000 dr yes yes 27.95
16 droidupnp pair-001 pr yes yes 29.15
17 droidupnp pair-002 kr no no 98.02
18 e-numbers pair-000 dr no no 97.56
19 e-numbers pair-001 dr no no 97.1
20 e-numbers pair-002 pr no no 99.61
21 e-numbers pair-003 pr no no 98.23
22 e-numbers pair-004 dr no yes 90.88
23 ep-mobile pair-000 dr yes yes 77.85
24 ep-mobile pair-001 dr yes yes 93.27
25 ep-mobile pair-002 pr yes yes 53.48
25 ep-mobile pair-003 kr no no 96.71
27 exalted-dicer pair-000 dr yes no 95.45
28 exalted-dicer pair-001 dr yes yes 91.32
29 exalted-dicer pair-002 dr yes no 95.02
30 exalted-dicer pair-003 pr no no 95.85
31 jlyr-lyrics pair-000 pr no no 99.3
32 jlyr-lyrics pair-001 dr no no 96.28
33 jlyr-lyrics pair-002 kr no no 97.5
34 jlyr-lyrics pair-003 dr no no 95.61
35 Screen-Notifications pair-000 dr yes yes 12.04
36 Screen-Notifications pair-001 pr no no 96.84
37 Screen-Notifications pair-002 dr no no 99.77
38 sokoban pair-000 dr no yes 72.75

Continued on next page

3http://eseg-cr.com/research/2015/CLEI-Extended-Tests.pdf
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Table 1 – continued from previous page

Number App Name Test Id UIF Type Manual
Testing,
Bug?

Digital Imaging
Processing, Bug?

Percentage
Similarity

39 sokoban pair-001 pr no yes 67.82
40 sokoban pair-002 kr no no 96.0
41 Todays-bRead pair-000 pr no no 95.88
42 Todays-bRead pair-001 kr no yes 87.07
43 WWWJDIC-for-

Android
pair-000 dr no no 99.75

44 WWWJDIC-for-
Android

pair-001 pr no no 99.41

45 WWWJDIC-for-
Android

pair-002 kr yes yes 94.01

46 yaab pair-000 dr no no 99.57
47 yaab pair-001 pr no no 99.04
48 yaab pair-002 kr no no 99.13
49 yaab pair-003 bb no no 100.0

In table 1 we reported the findings for each user-interaction feature applied to each application. In the
first column we enumerated the user-interaction features. The second column shows the application name.
The third column shows the test number for the application indicated in the second column. The fourth
column indicates the user-interaction feature (UIF) applied in this test (abbreviations of user-interaction
features were defined in Section 2.2). The fifth column indicates if manual testing reported a bug. The last
two columns will be discussed in the next section.

In Table 2 we reported the bugs that we found in each application and the user-interaction features tested
using manual testing. We did not report bugs that did not belong to user-interaction features. Column Test
ID indicates the number of the test where we found a bug for the application indicated in the column App
Name.

Table 2: Bugs found using manual testing.

Number App Name Test Id User-Interaction
Features

01 aagtl pair-000 double rotation
02 aagtl pair-001 pausing and resuming
03 aagtl pair-002 killing and restaring
04 ApkTrack pair-000 double rotation
05 crickets-alarm pair-001 double rotation
06 crickets-alarm pair-002 double rotation
07 defcol pair-001 pausing and resuming
08 droidupnp pair-000 double rotation
09 droidupnp pair-001 pausing and resuming
10 ep-mobile pair-000 double rotation
11 ep-mobile pair-001 double rotation
12 ep-mobile pair-002 pausing and resuming
13 exalted-dicer pair-000 double rotation
14 exalted-dicer pair-001 double rotation
15 exalted-dicer pair-002 double rotation
16 Screen-Notifications pair-000 double rotation
17 WWWJDIC-for-

Android
pair-002 killing and restarting

We reported 17 bugs based on user-interaction features (Table 2). We applied manual testing to 15
applications and we found bugs based on user-interaction features in 8 different applications. We reported
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11 bugs associated to double rotation, 4 bugs associated to pausing and restarting, and 2 bugs associated to
killing and restarting.

5.2 RQ2: How well can digital image processing detect bugs based on user-interaction fea-
tures?

We created a confusion matrix comparing manual testing vs. automated testing, for various thresholds. We
captured images before and after applying the user-interaction feature. If the percentage similarity between
the images was under a threshold, we reported that the user-interaction feature produced a bug. Otherwise,
we did not report any bug. We used five different thresholds of percentage similarity: 87.5, 90, 92.5, 95
and 97.5. Table 3 shows the results of comparing manual vs. automated testing using five thresholds of
percentage of similarity (column 1), in terms of the confusion matrix: true positive (column 2), false positive
(column 3), true negative (column 4), false negative (column 5), and three other metrics: accuracy (column
6), recall (column 7), and precision (column 8). We set the percentage similarity threshold of our bug
analyzer to 95%, as it shows better recall and accuracy.

In table 1 we reported the findings for each user-interaction feature applied to each application. The fifth
column indicates if manual testing reported a bug. The sixth column indicates if digital image processing
found a bug (threshold fixed in 95%). The last column shows the percentage of similarity between the images
captured before and after we applied the user-interaction feature.

Table 3: Confusion matrix using different thresholds.

Threshold TP FP TN FN Accuracy Recall Precision
87.5 10 3 29 7 0.80 0.59 0.77
90.0 10 4 28 7 0.78 0.59 0.71
92.5 12 5 27 5 0.80 0.71 0.71
95.0 15 7 25 2 0.82 0.88 0.68
97.5 17 17 15 0 0.65 1.00 0.50

We selected for our bug analyzer the threshold fixed in 95%. For this threshold accuracy = 0.82, recall =
0.88, and precision = 0.68. Digital imaging processing was able to detect 15 bugs of 17 bugs detected when
we using manual testing. We used the images captured when applied manual testing and we introduced the
user-interaction features.

6 Conclusion and Future Work

In this paper, we have proposed and evaluated a bug analyzer based on user-interaction features to detect
bugs in mobile applications for the Android platform. Our bug analyzer uses an interest point detector
and descriptor to identify new bugs. We conducted a case study. First, we identified bugs based on user-
interaction features and applied manual testing to 15 applications. Second, we used digital image processing
to identify bugs and we compared the results with manual testing.

Using manual testing we identified 17 bugs attributed to user-interaction features. We reported bugs in 8
out of 15 applications. Bugs based on user-interaction features are present in mobile applications and these
bugs threaten the quality of the applications.

We used digital image processing to identify 15 bugs. Findings show that digital image processing is
an alternative to finding bugs based on user-interaction features. The advantage of using digital image
processing is that the source code is not required. Of course, we need to do more experimentation using
digital image processing.

We are planning to design a new case study to evaluate digital image processing combined with GUI
information to find bugs based on user-interaction features.
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