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Abstract

In recent years, some scientists have embraced the distributed computing paradigm.
As experiments and simulations demand ever more computing power, coordinating the
efforts of many different processors is often the only reasonable resort. We developed an
open-source distributed computing framework based on web technologies, and named it
Capataz. Acting as an HTTP server, web browsers running on many different devices can
connect to it to contribute in the execution of distributed algorithms written in Javascript.
Capataz takes advantage of architectures with many cores using web workers.
This paper presents an improvement in Capataz’ usability and why it was needed. In
previous experiments the total time of distributed algorithms proved to be susceptible
to changes in the execution time of the jobs. The system now adapts by bundling jobs
together if they are too simple. The computational experiment to test the solution is
a brute force estimation of pi. The benchmark results show that by bundling jobs, the
overall perfomance is greatly increased.
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1 Introduction

In 2012 our research at the Catholic University of Uruguay (UCUDAL) demanded to run some really CPU
intensive simulations. The computing power requirements exceeded what our budget could afford. Hence
we shifted our focus from buying cloud time to using the computers that were already available to us.

In our university there is an important number of computers used by students and employees. Many
spend a significant amount of time idle. Harnessing their CPU time has three main issues. How could
we make use of the computing power of many different devices and platforms? How could we achieve this
without installing any kind of software in those computers? How could we assure the users their computers
would not be compromised in any way while running our software?

Almost all end user devices with network connectivity and a CPU powerful enough have at least one brand
of web browser available and up to date. Also, modern web browsers have efficient JavaScript interpreters
(or compilers) to provide its owner with a decent web experience. JavaScript is a powerful programming
language. Finally, running the jobs in the browser does not represent a security threat. Javascript code
executing in the browser’s environment is greatly restricted. It cannot access the file system, the operating
system, and can only establish network connections with the server it was downloaded from.

Based on the concept of volunteer computing, we developed an open source1 framework that allows a
developer to split a given workload into jobs programmed in JavaScript. We called it Capataz, after the
Spanish word for foreman. Jobs are sent through HTTP to the worker computers running a web browser.
An HTML page with embedded JavaScript controls all the process, handling the web workers and the AJAX
calls. Hence no special software is required to be installed, and an good portability is achieved.

A first version Capataz was presented in [1]. The first tests performed with the system showed that the
performance of the distributed process was susceptible to the amount of time each job spent executing in the
browsers. In this paper we present a new functionality aimed to mitigate this problem called job bundling.
We explain why it is necessary, the experiment designed to verify it and the results produced by it.

1Sources can be obtained at http://github.com/LeonardoVal/capataz.js.
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The rest of this paper is structured as follows. The second section introduces the state of the art, going
into volunteer computing, and comparing Capataz with similar projects. The third section describes the
features that make Javascript in particular and the web in general, suitable for the project. The fourth section
describes first tests and the benchmark problem used to validate the design. The fifth section introduces
the job bundling feature, the experiments performed to test it and the obtained results. Finally, the sixth
section contains our conclusions and final remarks.

2 State of the art

In this section we first present BOINC as the best exemplar of volunteer computing. Afterwards we describe
the first attempts to set up distributed algorithms using web technologies. Finally we introduce current
projects in this area, among which CrowdProcess is perhaps the most similar to Capataz.

2.1 Volunteer computing

Distributed systems are groups of networked computers working together towards the same goal. Volunteer
computing (or public distributed computing) is a type of distributed systems built with computing resources
donated by individuals, rather than bought by a single organization. The Berkeley Open Infrastructure
for Network Computing’s (a.k.a. BOINC) [2] is perhaps the most popular platform to set up this kind of
systems. Taken from their own website 2:

”Volunteer computing is an arrangement in which people (volunteers) provide computing re-
sources to projects, which use the resources to do distributed computing and/or storage.

• Volunteers are typically members of the general public who own Internet-connected personal
computers. Organizations such as schools and businesses may also volunteer the use of their
computers.

• Projects are typically academic (university-based) and do scientific research.”

BOINC started in 2002, as an improvement of the SETI@Home project. As of 2014 it hosts multiple
projects like the World Community Grid [3], ClimatePrediction.net [4] and SETI@Home [5]. BOINC API
is written in C++ and is preferably used with C++ or C. The low level programming allows for better
performance tuning, as well as the availability of GPU computing. BOINC does run in many platforms
(as of 2014 it includes most personal computer platforms, Android devices and Sony PlayStation). Still,
the distributed application must provide a version specifically tailored for the platform. It usually requires
recompilation to any specific platform.

From our perspective, BOINC has two major disadvantages. First, in order to contribute to a BOINC
project the installation of both the BOINC client and the software for a specific project is required. The
user must create an account, and in some cases manually configure the client. Second, writing a performing
application in C or C++ is usually more difficult than writing it in a scripting language like Python or
Javascript. Such languages provide automatic memory management, among other facilities.

A web based solution will not allow the programmer to handle the client’s hardware at such a low level
as BOINC does. Despite that, reasonable levels of efficiency can be achieved with Javascript. The enhanced
portability and not requiring users to install any specific software are advantages with which BOINC cannot
yet compete.

2.2 Early experiments

Running distributed algorithms using the computing power of web browsers is not a new idea. The first
attempts can be traced back to 2007, when Boldrin et al. [6] proposed a new approach for distributed
computing. Embedding AJAX in web pages, it was possible to distribute work to clients (web browsers)
while the users navigate the website. The server was implemented as a Java Servlet and managed problem
partitioning, subproblems distribution and results reassembling, communicating with client through the http
web protocol.

Although the authors’ proposed to exploit web browsers as clients, the idea on how to do it differs from
Capataz in a few ways. First, they propose using the client without the user noticing. Our approach is not
to embed code in a website in parasitic way. With Capataz the user would have to volunteer their computing
power knowingly. Another difference is that Web browsers in 2007 had some shortcomings as a platform

2http://boinc.berkeley.edu/trac/wiki/VolunteerComputing
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for distributed computing. Some of the issues detected back then, were related to Javascript not having
multithreading capabilities, something that clearly changed since 2007.

Also, the paper proposes a new architecture, but it does not present or provide a general framework
to use that architecture with any kind of problem, which is in the scope of Capataz. Finally, server side
Javascript was not an option in 2007, so Capataz differs in that it’s possible to use the same code in the
server and in the clients, giving the developer the possibility properly tune the solution by deciding at later
stages which code runs on the server and which one does on the client.

Capataz started as a project to run optimization algorithms in parallel efficiently [1], as did other ex-
periments before [7] [8] that used web browsers as a distributed computing platform. Both approaches also
lacked Javascript multithreading capabilities and the possibility to use modern technologies such as server
side Javascript. Even though they ran the algorithms showing promising results, they were specific for the
problem they were trying to solve, whereas Capataz evolved to be a general framework to run distributed
algorithms of any sort.

Other approaches were tested in [9] based on Java applets or plugins. These are not entirely portable,
since not every web browser can run Java applets out of the box.

2.3 Contemporary work

With the advent of new technologies (namely Google’s V8, NodeJS, HTML5, etc) new possibilities arose in
the development of volunteer computing. Not only the web browsers became a more feasible way to exploit
computing power. They became also a very efficient one. Some benchmarks [10] have a worst case scenario
where Javascript code is only 6 times slower than native C code.

Now it’s not only possible to use the CPU for calculations (like Capataz does), but it’s also possible to
use GPU. Duda and Dlubacz work with evolutionary computing in web browsers with GPU acceleration
[11] shows remarkable results. The calculation of the fitness function is accelerated by up to 50%, and the
local search process can be accelerated tenfold. Again, it is a custom development rather than a general
framework. Yet they demonstrate a novel approach to accelerate distributed computing by using the GPU.

There are many ways to use the GPU in Javascript but they all require the use of plugins which under-
mines portability. The most supported solution is WebGL, which is included natively in the latest versions
of many web browsers. Although the use of WebGL is going to reduce the portability of the solution, it does
mantain the principle of not asking the user to install specific software.

There’s been at least one attempt to provide a general framework for volunteer computing on the GPU
using WebCL [12]. In 2013, MacWilliam and Cecka presented the CrowdCL framework [13]. CrowdCL not
only allows for the distribution of jobs to run WebCL tasks, but also provides a level of abstraction on top of
WebCL to provide an easier programming model for the developer. Although the results are not compared
to parallel javascript in order to compare it with other distributed computing solutions, and is reliant on
a browser plugin, it’s a very interesting solution and integration with the WebCL abstraction may provide
Capataz with an easy way to develop WebCL solutions.

Using the GPU was not considered for Capataz due to the context in which it was going to be executed
in first place: machines without a capable GPU. There are theoretically no limits imposed by the framework
about the use of WebCL, WebGL or any other plugin based technology, since Capataz will use web workers
as default, but it also provides DOM access if required.

2.3.1 CrowdProcess

Volunteer computing is an area that is growing, not only in the academic environment as shown before, but
also on the market. CrowdProcess [14] is a company founded in 2013 by Pedro Gabriel Fonseca, João Pinto
Jerónimo and João Abiul Menano. They provide a namesake cloud based solution that is the sole web only
commercial volunteer computing development as of 2014.

The company recruits webmasters to embed a specific component into their websites. The company
states that this component will take a little of the website users’ computational power to run distributed
algorithms. Developers wishing to use the distributed platform are provided with a web API, but the actual
implementation is kept private.

3 Javascript’s suitability

JavaScript is the de-facto standard programming language of the world wide web. It is evident considering
the changes in the W3C HTML specification. Dating back to 1999, version 4.01 [15] mentions three different
options for scripting languages embedded in web pages: JavaScript [16], TCL and Visual Basic Script. As
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of July 2014, the W3C HTML 5 Specification [17] working draft only mentions JavaScript as the default
language.

Besides its current popularity, Javascript has many advantages as a platform for volunteer computing
nowadays. In terms of efficiency, companies like Google, Microsoft, Apple and Opera are interested in
having efficient scripting implementation running inside their web browsers. The performance of JavaScript
executing in any modern web browser easily competes with any other scripting language like Python or Ruby
[18]. Compared with C, Javascript code can be at most 10 times slower [10].

Nevertheless, until recently it was impossible for Javascript programs to spawn parallel processes or
threads, in order to take advantage of architectures with many cores [6]. A change came in 2010 with the
addition of the web workers API of the WHATWG HTML Living Standard [19] (chapter 9 ”Web workers”).
Web workers are an explicit, standard and safe way to run many threads of Javascript code in parallel.
Hence web browsers can exploit architecture with multiple processors.

JavaScript also makes transporting code through a network quite easy. Any user defined function’s code
can be accessed by converting it to a string (see ”15.3.4.2 Function.prototype.toString()” in [16]).
After retrieving this code in text form, the client uses the eval function to get an executable function object,
calls it and send the result back to the server. Still appending all necessary definitions to the serialized code
is both clumsy and inefficient. JavaScript does not have a module system built in yet, but some libraries
can be used instead [20].

Another issue with volunteer computing is its safety. Every volunteer is downloading code from a network
to execute it in their computers. If the servers get compromised, a malicious hacker could very well severely
damage all connected computers. Here there is another advantage of using web technologies.

Web users are constantly under attack from malicious web sites that try to exploit every single feature of
the browser. Web browsers have to be secure as well as functional. Every script runs very isolated from the
host computer. There is a very restricted access to persistent storage [21], and none to the local file system.
Access to remote sites through networking (AJAX calls, for instance) is restricted by the same origin policy
[22]. Executing any program installed in the local computer is difficult, even more without the user’s explicit
permission.

All these limitations may appear as problems, but they are actually a relief. The constraints and policies
the browsers apply guarantee the user a level of security that other distributed computing solutions do not.

Lastly, Javascript can be used both on clients and servers of a distributed system. JavaScript running
in the server became a reality when Joyent Inc. released NodeJS in 2009 [23]. This software is a version of
the Google Chrome’s V8 engine [24] reworked to run outside of the browser. There are other options for
running JavaScript in the server (like Mozilla’s Rhino), but NodeJS remains the most popular [25].

Implementing the Capataz server in JavaScript has an important advantage. During a distributed al-
gorithm development, many times it is unclear which parts of the workload will be sent to the clients to
run, and which parts will be executed in the server. For example, a genetic algorithm can be distributed in
several ways. The fitness evaluation for each member can be sent to a separate worker, or the whole genetic
algorithm is better executed in parallel, e.g. with an island scheme [26]. If all logic (at both server and
clients) is expressed in the same programming language (JavaScript), changing what executes on either side
is far easier and quicker.

4 First tests

Capataz was implemented as a library and not as an application itself. It is not meant to be used as a
separate server to which to submit jobs (as CrowdProcess), but rather to be embedded in another software.
Distributed algorithms run in the server using Capataz to instantiate an HTTP server. Web browsers connect
to this server, which will provide them with a web page and all the necessary code to become a contributing
part of the distributed algorithm. Crowdprocess has the advantage that it is already running on the web
with around 2.000 contributors most of the time. Yet, contrary to CrowdProcess’ solution, Capataz is open
source and it is possible to control how, when or where the distributed algorithm is executed.

Jobs are scheduled by the host application, to be split among all the connected clients. Promises are
used to handle the asynchronism as comfortably as possible. Capataz handles lost connections, reassigning
jobs if necessary. The browsers are also instructed by the server to retry lost connections. If the server gets
shutdown and restarted, browsers reload all code that could have changed.

All of these features allow the programmers of distributed algorithms to ignore a lot of the details of the
workload distribution itself, and better concentrate on its actual goal. Please refer to [1] for more details on
the implementation.

There were two major concerns about the implementation. The first one was portability, i.e. if the system
could actually bring many different platforms to work together. Portability must be checked, because is the
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main justification to use web technologies. If a good portability is not achived, Capataz would be just a
slower clone of BOINC.

The second one was performance, particularly how much the full execution time is reduced by parallelizing
and distributing the workload. Performance must be verified because of two reasons: Javascript and HTTP.
Javascript code is fast when compared with other scripting languages like Python, but it is slow compared
to languages like C or C++. Using HTTP generates more traffic than UDP or TCP for the same amount
of information being transfered.

4.1 Benchmark problem

The first tests of Capataz were designed to assess if the system was truly portable and met the performance
expectations. The test case used for this purpose was an old, inefficient and inaccurate brute force method
to estimate pi. This constant can be obtained using the formula for a circle’s area.

A = π × r2 ∴ π =
A

r2
(1)

Consider a circle with radius r and centered at the origin (0,0). Any point which distance from the origin
is less than or equal to r will be inside the circle. Therefore it is possible to estimate the area of the circle
by adding up the ordinates of the points in the circumference at each abscissa.

if r2 = x2 + y2 then y =
√
r2 + x2 (2)

∴
A

4
≈

r∑
x=0

√
r2 − x2 (3)

∴ π ≈
r∑

x=0

√
r2 − x2 =

r∑
x=0

√
4

r2
r2 − x2 (4)

This process can be trivially parallelized in any number of concurrent calculations. The workload is
distributed by making the clients return a slice of the sum for all values of x within a certain range. After
all values of x ∈ [0, r] have been dealt with, the server sums up all the intermediate results. After that it
applies the formula and outputs the estimation, compared with the available (and quite accurate) value in
Math.PI.

This technique is by no means a serious attempt at estimating pi. There are many far faster and more
precise methods. In spite of that, it is a very good test case for Capataz. It is simple to program, yet it can
easily demand huge amounts of computing power. Varying the radius of the circle the total amount of CPU
time required for the whole process can be varied. Also, the process can be parallelized in any number of
concurrent calculations. Varying the range, the amount of time spent by the client to finish one job can be
altered as well. Since the accuracy is never greater than the other methods for estimating pi, the result of
the process can always be properly verified.

4.2 Portability

Our goal was to be able to run code in all the devices usually available in university classrooms, computer
labs and offices. The list includes:

• PCs and laptops with Windows XP, Windows Vista, Windows 7 or Windows 8.

• PCs and laptops with Ubuntu Linux.

• Macbooks and iOS devices (iPhones and iPads).

• Tablets and smartphones based on Android 3 or more.

So far the web browsers tested successfully to work with Capataz are:

• Internet Explorer 10 in PCs with Windows XP, Windows Vista, and Windows 7.

• Mozilla Firefox 21 or greater in PCs with Windows XP, Windows 7 and Ubuntu Linux.

• Google Chrome 27 or greater in PCs with Windows XP, Windows 7 and Ubuntu Linux.

• Opera 11 or greater in PCs with Windows 7.
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• Safari 6 in iPhone 4S with iOS 6.

• Google Chrome 29 or greater in Android 4, with smart phones Nexus 4 and Samsung Galaxy S3.

Hence we conclude that the portability of Capataz is very good. The only real option missing is Internet
Explorer version 9 or previous, which as of 2014 is still quite common. Despite that, PCs running this rather
old version of Microsoft’s web browser have other compatible options like Mozilla Firefox or Google Chrome.

4.3 Performance

The performance of Capataz was measured as the total time taken by distributed computations to complete.
We believed that the network traffic would have a more considerable impact than the execution of the
Javascript code. Specially if the jobs assigned to the browsers were too simple, i.e. took very little time
to execute. HTTP is not a particularly efficient protocol, yet it is the only protocol available in standard
browsers.

Our hypothesis was that the total runtime would result as the combination of two behaviours. First,
there is the effect of parallelization. Suppose the whole workload takes T seconds to run executing in one
processor. It is expected that if the workload is split in two jobs, executing in two different processors in
parallel, it would take T/2 seconds to run the whole workload. In general, if the workload is split in P
jobs (each run by a different processor) the time to complete would be T/P . Nevertheless this estimation
is ignoring the cost of splitting the workload and joining the results after all processors have finished. We
assumed the overhead of parallelization of a task to be a linear function of the number of jobs.

The total time of the distributed workload would be the sum of both functions. Figure 1 shows a simple
example. The time gained by further splitting the workload decreases as the number of jobs increases. Also,
the cost of splitting the workload, distributing the jobs and joining the results increases as the number of
jobs increases. Hence, there is an optimal number of jobs in which the total time of the whole distributed
workload is minimal.
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Figure 1: Hypothesized behaviour of distributed algorithms’ total time

The cost of splitting includes the communication between the different processors. Furthermore, unless
splitting the workload or joining the result were extremely complicated, most of this time is spent in network
tranfers. Ergo, the network time greatly affects the optimal number of jobs. If this optimum were too low,
using Capataz could be pointless, since it would be counterproductive to use a large number of devices.

The experiment performed with the pi estimation benchmark is described in [1] in full detail. Figure 2
shows how the total run time changed as the number of jobs increased. The test was run in a dedicated LAN
of 12 computers (with 2 cores each). The full workload running in a single processor took approximately 85
seconds. The best number of jobs was 128, yet the task could be split up to around 8000 parts before the
performance became worse that running the task in only one processor. At this extreme, job execution took
around 50 milliseconds in average.

After these first experiments, Capataz’s development focused on increasing the system’s performance.
The results showed that the full execution time of a distributed algorithm degraded severely if the jobs where
evaluated too quickly by the clients. The amount of time spent in communication between the clients and
the server should be reduced. Most importantly, the ratio between time spent in communication and the
execution time in the browsers should be reduced. In the next section, we introduce the new feature added
to the system to remedy this problem.
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Figure 2: Experimental results of the first experiments.

5 Job bundling

It was speculated that bundling jobs could decrease the ratio of communication time over execution time.
As the jobs get executed and results are reported, the server can monitor the execution time in the clients.
The server can detect if execution time at the clients drops below a given threshold. The server can try to
mitigate this by bundling jobs together, sending them all together to the workers. The client will execute
them all in sequence and post all the results also in one bundle. In this way communication time is reduced,
and the performance of the whole run can be improved. The bundling should be done transparently, so that
the developers using Capataz would not have to change their code to use it.

The second test suite was carried out with an updated version of the server. The server no longer sends
single jobs to the clients. It packs several of these jobs into what we call tasks. The server now monitors the
average execution time of the jobs executed recently by the browsers. Two parameters were added to the
server’s configuration: the desired execution time for the clients (5 seconds by default) and the maximum
amount of jobs that can be included in a task (50 by default). The amount of jobs to put into a task is
calculated as follows.

taskSize = max

(
1,min

(
maxJobsPerTask,

⌊
desiredExecutionT ime

averageExecutionT ime

⌋))
(5)

5.1 Experiments

The performance improvement of this modification needed to be verified. The network time added by the
work fragmentation is due in part to connection negotiation, which is reduced by bundling the jobs. Still,
the amount of data sent back and forth between server and client in both cases is similar in size. Other
factors might come into play here, like server side compression, Javascript compilation optimization, etc.

For the second test suite, Capataz would distribute the benchmark pi estimation in a LAN with 16
computers, using 2 web workers on each. The computer were Lenovo laptops with an Intel(R) Core(TM) i3
processor (3120M with 2 cores running at 2.5 GHz) and 4 GB of RAM, running Google Chrome 36 browsers
on Windows 7 Professional SP1 (64 bits). These machines are more powerful that the ones used before.
Also differently from the first tests, the server was not installed on the same network as the clients. All
connections would have to go through a WAN link. Again all computers were exclusively dedicated to run
these tests.

The server executed the pi estimation benchmark with 17 different configurations, 39 times each. All
configurations used a radius of 232 − 1. The server performed each configuration with two task sizes: 1 (no
bundling) and 50. Executing the whole workload by only one client took in average 25.3 seconds. When the
workload was split in 216 pieces and jobs were not bundled, each took around 11.4 milliseconds in average.
Surprisingly, in the same scenario but with job bundling, each job took around 9.6 milliseconds in average.

In order to properly assess if the average execution time with job bundling is actually less than the
average without bundling, we performed Welsh t-tests [27] on each configuration. The null hypothesis is
that the average execution time without bundling is less than or equal to the average time with bundling.
Hence, the alternative hypothesis is that job bundling has a lower average execution time. The Welsh variant
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of the t-test is preferred over the simpler Student t-test, because we do not believe it can be assumed that
the standard deviations of the distributions are the same.

Table 1: Execution time
Job count Task size=1 Task size=50 Welsh-t Welsh-df p-value

1 24686.2 24724.9 -0.46 67.99 100%
2 12467.6 12371.8 2.24 131.83 1%
4 6282.4 6268.5 0.57 297.43 28%
8 3217.3 3129.5 5.44 392.62 0%
16 1606.7 1555.6 12.55 775.07 0%
32 819.5 778.1 16.40 1360.67 0%
64 424.1 400.3 18.73 2874.41 0%
128 226.9 203.8 43.46 5628.22 0%
256 117.9 107.7 52.80 12775.94 0%
512 68.4 60.1 81.84 29355.27 0%
1024 42.5 36.2 112.18 71634.24 0%
2048 28.3 22.6 209.85 132573.84 0%
4096 20.4 15.9 324.98 257690.90 0%
8192 16.0 12.6 418.04 538484.86 0%
16384 13.5 11.0 490.07 1123995.24 0%
32768 12.1 9.9 599.83 2243580.37 0%
65536 11.4 9.6 696.73 4475557.50 0%

Table 1 shows the measurements for the average job execution time at the clients with both task sizes,
together with the values of the Welsh t-test. The null hypothesis cannot be refuted when executing with the
whole workload, or when splitting it into 4 pieces. With 8 or more pieces it can be refuted with a significance
level of 1%. It is clear that the average execution time decreases with job bundling when there is a significant
amount of jobs.
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Figure 3: Job bundling comparison on execution time at the browsers as a function of the number of jobs

The only explanation we can provide for this behaviour is that Javascript engines in the clients are making
optimizations. The scheduled jobs use the same code with different arguments. Maybe the JIT compiler
is reusing the repeated code when the jobs are put together, but not when the code is retrieved from the
server every time. Yet, this is highly speculative. In figure 3 the average execution times for both task sizes
are plotted together, showing the small but clear difference between them. Besides the comparison of both
scenarios, it is worth noting that the shape of the curves matches the results of the previous experiments.
The execution time appears to converge to a lower value, since we are using faster hardware.

The main intent of these tests was to verify whether the full execution time degrades less with job
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bundling or not. The answer is yes, although there is still an increase as the workload is split into more jobs.
Figure 4 plots the average total times for both task sizes.
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Figure 4: Job bundling comparison on total run time as a function of the number of jobs

With bundling the total time remains almost the same until the number of jobs is larger than the task
size. As the amount of jobs increases, the time of the entire run is improved by job bundling almost by a
factor of 10, compared to dispatching single jobs. Performance still degrades, as it is to be expected. Again,
Welsh t-tests are performed to check if the average full execution time is really different with and without
job bundling. The null hypothesis asserts both averages are equal, and the alternative hypothesis asserts
the opposite. Table 2 shows the data plotted in figure 4, together with the calculations of the Welsh t-tests.

Table 2: Total run time without job bundling (task size 1) versus with job bundling (task size 50).
Job count Task size=1 Task size=50 Welsh-t Welsh-df p-value

1 25.31 25.25 0.45 73.78 65%
2 13.20 25.25 140.00 73.89 0%
4 8.26 25.60 76.69 49.20 0%
8 6.49 25.72 99.21 55.76 0%
16 4.87 25.58 214.03 68.59 0%
32 4.43 25.67 241.93 58.57 0%
64 4.78 12.22 93.92 63.68 0%
128 8.74 10.91 22.40 46.10 0%
256 8.34 6.38 18.45 47.25 0%
512 11.72 4.50 60.62 46.07 0%
1024 21.32 7.08 6.73 38.61 0%
2048 39.34 6.94 124.75 48.89 0%
4096 77.34 11.28 113.68 41.91 0%
8192 151.70 18.29 86.79 39.34 0%
16384 314.12 34.10 24.06 38.13 0%
32768 607.08 64.37 108.76 38.89 0%
65536 1209.39 126.86 73.65 38.75 0%

The average total execution time can be considered different in all cases except when the workload is not
split. This is reasonable. Capataz reassigns jobs, to cope with clients becoming unavailable. However jobs
are not repeated in the same task, since it would be counterproductive. Hence, if there is only one job there
can be only one task with only this job. That is also the reason why before 64 jobs, the full time with job
bundling is the same as with only 1 job.

All configuration from 1 to 32 jobs are below the 50 jobs per task cap. In all these scenarios all jobs will
be put into one task at the first request. Figure 5 plots the minimum, maximum and average task sizes for
the run with task size 50. It shows the three values are the same until the job counts gets greater than the
task size. The average execution time Capataz uses to calculate the task size is not available at the start,
when results have not been posted yet. In this case, the server will use the maximum size. This logic may
need to be revised.
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Figure 5: Task size as a function of the number of jobs

In spite of a worse performance with low job counts, as the amount increases the job packing results in
better times. The cross point is between the 128 and 256 jobs, with execution times around 200 and 100
milliseconds respectively.

Again it is worth noting that the full execution time without job bundling matches the results of previous
experiments. In this case the lower time is found where the job count is equal to the amount of parallel
workers being used: 32.

6 Conclusion

In this paper we have shown Capataz to be an adequate solution for distributed computing. After the first
tests our biggest concern was the possible performance degradation if jobs got executed too quickly. Job
bundling is very useful to mitigate this problem. Experiments show that the total execution time can be
reduced by up to 10 times, when compared to the previous version. It allows the programmers of the code
to be distributed to split it as they see fit, regardless of any possible problems resulting from these parts
being too simple.

6.1 Future work

Nonetheless there is still room for enhancements. For example, the server trusts the clients to run the task
exactly as it was delivered, and to reply with the actual results properly. Yet a browser may return a wrong
result, either by accident or intentionally. Volunteer computing schemes usually apply some sort of control
over the connected clients and the results they report. User authentication can be enforced, but it may
hinder the participation of some devices in the distributed algorithm.

This problem can be tackled with a (configurable) degree of redundancy of the scheduled jobs. Basically
some or all jobs are assigned many times to different clients. Only the results in which more than one client
concur are taken into account. By doing so, one or a few rogue workers cannot seriously damage the whole
distributed run.

Capataz is quite robust from the browsers’ perspective. Every client is set up to retry failed communi-
cations with the server, resuming as soon as it is possible. Still, a server failure always implies a restart of
the whole process. Server restart is monitored by the clients, and when detected it forces the reloading of
all Javascript modules, to cope with possible changes. But former scheduled jobs and their results are not
stored, so they cannot be restored and have to be executed again.

This is a result of how the solution was designed. Capataz manages the task scheduled by the process
that uses it. This abstraction allows for a very flexible framework, but makes the system recovery very
difficult. So far the recovery of an interrupted run must be handled by the program using Capataz.

Lastly, a new development is being discussed in the Web Hypertext Application Technology Working
Group (WHATWG), as of October 2014. Allegedly, Javascript code will be able to inspect the number of
threads the browser can spawn safely. This property is given the provisional name hardwareConcurrency.
When standardized, this datum will allow Capataz clients to adapt to the host platform. The current version
spawns a fixed number of web workers, part of the server’s configuration.
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