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Abstract 

This paper aims to present a learning model for coordination schemes in Multi-Agent Systems 

(MAS) based on Cultural Algorithms (CA). In this model, the individuals (one of the CA 

components) are the different conversations that may occur in any multi-agent systems, and the 

coordination scheme learned is at the level of the way to perform the communication protocols 

into the conversation. A conversation can has sub-conversations, and the sub-conversations 

and/or conversations are identified with a particular type of conversation associated with a 

certain interaction patterns. The interaction patterns use the coordination mechanisms existing 

in the literature. In order to simulate the proposed learning model, we develop a computational 

tool called CLEMAS, which has been used to apply the model to a case of study in industrial 

automation, related to a Faults Management System based on Agents.  

Keywords: Cultural Algorithms, Coordination, Multi-Agent Systems. 

1 Introduction 

A MAS is an agents community that interacts by using high level communication protocols and languages, to solve 

problems beyond its capabilities or knowledge [1]. This society of agents may face conflicts not only to 

communicate, but also by the use of resources, task allocations, etc. To handle these conflicts, there exist 

coordination mechanisms (CM), which solve these problems. The interactions between agents can be viewed as 

conversations, which in turn may have sub-conversations. To characterize these conversations and sub- 

conversations are used types of conversations (TCs), which defines the interaction patterns that can be performed by 

using well-known communication protocols  [2, 3] . In this paper, a learning model based on Cultural Algorithm 

(CA) is proposed to optimize coordination schemes in a MAS. It aims to set up the particular CM in each one of 

their conversations. Then, in this sense, a set of coordination schemes that MAS can use, can be seen as the 

instantiation of the MAS with a particular configuration of CM in their conversations. 

The CA can provide knowledge, since one of its main components is a common space of experiences providing the 

capacity for collective learning based on knowledge sharing. Some works related to the coordination of MAS are: in 

[3] it is studied the ad hoc coordination problem, that is, design autonomous agents, which are able to achieve 

optimal flexibility and efficiency in a MAS with no mechanisms for prior coordination. This work formally 

conceptualizes this problem by using a game-theoretic model, called the Stochastic Bayesian Game, in which the 

behavior of a player is determined by its private information. Based on this model, they derive a solution, called 

Harsanyi-Bellman Ad hoc coordination (HBA), which uses the concept of Bayesian Nash Equilibrium in a planning 

procedure to find optimal actions in the sense of Bellman Optimal Control. Other works that address the learning 

approach to coordinate MAS are [4, 5]. These works use one of the techniques more used in multi-agent learning, 

the Reinforcement Learning (RL). In [4], they propose a Bayesian model for optimal exploration in multi-agent 
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systems where the exploration costs are weighed with respect to their expected benefits, by using the notion of value 

of information.  Unlike standard RL models, this model requires reasoning about how one‟s actions will influence 

the behavior of other agents. The estimated value of an action, given a current model, requires a prediction about 

how will be the influence of this action on the future actions of other agents. The value of information associated 

with an action includes the information that is provided about other agent‟s strategies. The work [5] studies the 

reactive learning in MAS. The central problem addressed is how several agents can collectively learn to coordinate 

their actions in a way to solve a given environmental task together. In approaching this problem, two important 

constraints have to be taken into consideration: the incompatibility constraint, that is, the fact that different actions 

may be mutually exclusive; and the local information constraint, that is a fraction of its environment. They propose  

two algorithms, called ACE and AGE (ACtion Estimation and Action Group Estimation, respectively), for the 

reinforcement learning of appropriate sequences of action sets in MAS. The model proposed by [4] will be 

compared later with our learning model based on AC. 

The previous works have the same north „coordination in MAS‟, besides to have a planning procedures-oriented 

approach and coordinated actions, with the goal to ensure the achievement of the MAS objectives. This means 

addressing the internal behavior of the agents to achieve learning. That is, they attack the problem of coordination 

based on internal actions and behaviors of MAS, for obtain a strategies model of the agents, and achieve collective 

learning. This class of approaches needs an internal knowledge model of each agent into the MAS. 

Our model also aims to coordination in MAS, searching the optimization of coordination schemes through a 

collective learning process, but from another point of view, an external approach to the MAS based on the 

communication process, and using the common space provided by the CA. It is from this space of exchanging 

knowledge that the MAS achieves to discern (learn collectively) which is the most suited CM for a set of 

conversations. Thus, the proposed learning model optimizes the coordination of MAS relating to the communication 

tasks, by considering the costs of processing and communication generated by each CM.  

The paper is organized as follows; section 2 discusses the theoretical framework in which the model is based. 

Section 3 presents the proposed formal learning model for coordination schemes for MAS. Section 4 presents the 

design and implementation of CLEMAS tool. Section 5 presents the application of the model to a case of study and 

the results; finally, section 6 presents the conclusions. The case study is in the field of industrial automation, which 

is a MAS-based Fault Management System (FMS). 

2 Theoretical Framework  

For this paper, we can cite three important issues: cultural algorithms, the problem of coordination in MAS, and 

collective learning in MAS. 

2.1 The problem of coordination in MAS 

We can describe coordination in SMA as the set of complementary necessary activities to be performed in a 

community of agents to act collectively [1]. In MAS, coordination can be seen as a process in which agents involved 

execute their communication acts in a coherent manner. Coherence refers to how well an agents system behaves as a 

unit. There are several reasons about why agents need to be coordinated [6]: 

 Prevent anarchy or chaos: coordination is necessary or desirable because, with the decentralization in 

agent-based systems, anarchy can set in easily. Any agent no longer does possess a global view of the 

entire community to which it belongs. This is simply not feasible in any community of reasonable 

complexity. 

 Meet global constraints: there usually exist global constraints which a group of agents must satisfy to be 

deemed successful. Agents need to coordinate their behavior if they must meet such global constraints.  

 Distribute expertise, resources or information: agents may have different capabilities and specialized 

knowledge. Alternatively, they may have different sources of information, resources (e.g. processing 

power, memory), reliability levels, responsibilities, limitations, charges for services, and so on. In such 

scenarios, agents have to be coordinated. 

Now, one way to obtain a generalized approach for the coordination of MAS from the communication point of view, 

is characterizing interactions among agents. In this work, a conversation is a set of interactions in the community of 

agents to achieve a goal at a given time. These interactions are called “speech acts” or “communicative acts”. As we 

said, the conversations can be decomposed, in turn, into sub-conversations. The conversations or sub-conversations 

can be characterized by types of conversations (TCs), which are specific patterns of interactions. In [2, 3] four TCs 

are defined, based on the FIPA communicative acts, given by: 

 TC1: Consult. An agent searches any kind of information in databases, repositories, warehouses and 
Internet. 

 TC2: Assign. An agent assigns the tasks performing to other agents.  
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 TC3: Inform. An agent informs to others the occurrence of a certain event, information that is being 

processed or another kind of information. 

 TC4: Request. The sender requests to the receiver to perform some action or service.  

Moreover, these TCs are performed following some CM. In particular, our model uses the following CM 

standardized by FIPA: English Auction (SI), Dutch Auction (SH), the Contract Net (Tender, L), and Planning (PL). 

They have been formalized mathematically in previous studies [2, 3], and they are used by CLEMAS tool. Thus, in 

our model, a conversation can be characterized by one or more TCs, and each one may be treated by different CM. 

2.2 Collective learning in MAS 

There is a common agreement that there are two important reasons for studying learning in MAS: to be able to 

endow artificial MAS (e.g., robot swarms, software agents) with the ability to automatically improve their behavior; 

and to get a better understanding of the learning processes in natural multi-agent systems (e.g., human groups or 

societies). In MAS two forms of learning can be distinguished [5]: first, centralized or isolated learning, i.e. the 

learning carried out by a single agent (e.g. motor activities); and second, distributed or collective learning, i.e. the 

learning carried out by the agents as a group (e.g. by exchanging knowledge or by observing other agents).  

2.3 Cultural Algorithms 

Evolutionary computation (EC) methods have been successful used in solving many diverse problems of search and 

optimization due to unbiased nature of their operations, which can be interesting in situations with poor or no 

knowledge domain. However, there can be considerable improvement in their performance when problems with 

specific knowledge are used in the solving process. in order to identify patterns in their performance environment 

[7]. Cultural algorithms (CA) were developed by Robert G. Reynolds, as a complement to the metaphor used by EC 

algorithms. They are based in the fact that the cultural evolution can be seen as a process of inheritance in two 

levels: the micro-evolution level, which consist in the genetic material inherited from parent to their offspring, and 

the macro-evolutionary level, which is the knowledge acquired by individuals through generations, and once 

encoded and stored, serves to guide the behavior of individuals belonging to a population. These algorithms work in 

two spaces. The first, the population space with a set of individuals, like in all EC methods. Each individual has a set 

of independent features, with which it is possible to determine their fitness (objective function). On this space 

operate genetic operators, such as crossover and mutation, for his reproduction. The second is the belief space, 

where knowledge of previous individuals‟ generation is stored. From the five knowledge used in this belief space 

defined in the literature, two are the most used (and it will be used in this work), the “situational knowledge”, 

consisting of specific examples of important events, such as successful and unsuccessful solutions, and the 

“normative knowledge”, which is a collection of ranges of desirable values for the individuals in the population 

component. There are also a communication protocol that allows the interaction between these two spaces, formed 

by the “acceptance function” and the “influence function” [7]. In the Fig. 1 is illustrated each one of the components 

of the CA with its operators.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Cultural Algorithms Framework 

3 Learning Model of Coordination Schemes in MAS 

The formal model of learning proposed in this work involves the formal definition of the CM and the components of 

a CA [8]. Specifically, the components of the learning model are: the population, the CM specification, the belief 

space, the objective function, and the acceptance and influence functions. A basic pseudo-code for our learning 

model is shown in Fig. 2.     
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Figure 2: Basic Pseudo-code for CA- Based Learning Model 

The population, as in any method of CE, is formed by individuals. In our model, each individual is a MAS 

composed of n different conversations in the community of agents (that is an instantiation of the MAS using in each 

case different CMs). Remember that, eventually, every conversation, in turn, has sub-conversations. All of them are 

characterized by the TCs previously defined in section 2.1.  

In the Fig. 3, 𝐶𝑖  denotes the conversation i existing in the MAS, FO is the value of the objective function of the 

individual (instance of the MAS), 𝐶𝑖 ,𝑘  denotes the sub-conversation k of the conversation i, being mi the number of 

associated sub-conversations to the conversation, 𝑇𝐶𝑠 is the type of conversation, 𝑀𝐶𝑖 ,𝑘  is the CM used, and 𝑃𝑖 ,𝑘
𝑢  are 

the 𝑢 parameters of this CM. When a conversation have not sub-conversations, k = 1.  

 

C1 C2 … Cn FO 

 

Ci.k TCs 
Coordination Mechanism 

MCi.k P
1
i.k P

2
i.k … P

u
i.k 

∀   𝑖 =  1, 2, … , 𝑛 , 𝑘 =  1, 2, … , 𝑚𝑖  

Figure 3: Internal Structure of an Individual 

The highlighted part of the individual represents the knowledge or experience that it brings. In order to describe a 

little more the Fig. 3, the following example assumes that: There is one individual, a MAS, with three conversations 

(C1, C2, C3), where C1 has two sub-conversations (C1.1, C1.2), C2 has two sub-conversations (C2.1, C2.2) and C3 has 

three sub-conversations (C3.1, C3.2, C3.3). Besides, it is assumed that the sub-conversation C2.1 has a type of sub-

conversation TC2 assigned. And finally, for that TC the individual uses the CM english auction (SI). In the Fig. 4 is 

shown this example, doing a specific zoom for C2,1. This figure also represents the gene of the individual, where Co, 

Cp(j), and i are the parameters of the CM used by C2,1 (see [2, 8] for more details about the CM). 

C1 C2 C3 FO 

 

C2.1 TC2 
Coordination 

Mechanism 

SI C0 i CP(j) 

Figure 4: Example of a Gene on Individual, Zoom in C2 

For the reproduction of the population are used two genetic operators, mutation and crossover, and only a part of the 
individual, that is, a gene, is used to apply these genetic operators. For example, assume two individuals like that 
one of the Fig. 4. We further assume that each conversation (C1, C2, C3) has only one sub-conversation (that is, the 
conversation itself), then, that individual shall be composed of three TCs. Now assume that each of these TCs is 
defined by a CM. For mutation and crossover, the individual genes are those ones representing the CM and their 
specific parameters. For these two individual, the application of the crossover operator is shown in Fig. 5. 
In Fig. 5, part (a) are the parents and part (b) are their offspring. In the parent to the left, the first CM  is „SI‟ for the 

TC of C1, „L‟ for the TC of C2, and „SH‟ for the TC of C3, the same in the case of the another parent. The one-point 

crossover is used (indicated by the double arrow), which is only applied at the level of the CM. We see as two new 

children are generated. The mutation is simple, it is to take a CM or more from the conversations of a parent, and 

change it randomly by another CM. 

 

Begin 

  t = 0; 

  Initialize population P(t); 

  Initialize Coordination Mechanisms CM(t);   

  Initialize Belief Space BS(t); 

    Repeat 

        Evalute population P(t) with the objective function; 

 Adjust BS(t) with the acceptance function of P(t) 

       Variation of P(t) from P(t+1) using the influence function of  

            BS(t) and the genetic operators 

   Until number of generations reached; 

End 

Individual 

Individual 
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SI L SH FO  SH SI L FO 

(a) 

 

SI SI L FO  SH L SH FO 

(b) 

Figure 5: Crossover Operador 

3.2 Objective Function 

The objective function evaluates the performance of each individual. This function is based on the Processing Cost 

(CP) and Communication Cost (CC) of each CM used by the individual (see equation (1)). There, the parameters a 

and b are constants defined by the user to weigh the importance of the communication part with respect to the 

processing part, n is the number of conversations, mi is the number of sub-conversations in a conversation i, CPi,k 

and CCi,k are the processing cost and the communication cost, respectively, of the CM used in the sub-conversation 

k of the conversation i. For our case, the best individual will be the one that minimizes the objective function [2, 13]. 

 𝐹𝑂 =    𝑎 ∗ 𝐶𝑃𝑖 ,𝑘 + 𝑏 ∗ 𝐶𝐶𝑖 ,𝑘 
𝑚 𝑖
𝑘=1

𝑛
𝑖=1  (1) 

The processing cost CPi,k is given by the equation (2), and its units are based on the average execution time: 

 𝐶𝑃𝑖 ,𝑘 = 𝑃𝐼𝑘 + 𝑃𝐸𝑘 +   𝐴𝑙 ,𝑞

𝑛𝑗

𝑞=1
𝑗
𝑙=1   (2) 

This cost depends on the actors involved, and processing algorithms. For auction (English or Dutch), PIk is the 

initial price setting and start of auction of the sub-conversation k, PEK is the process of selecting the winning agent, j 

the number of rounds, nj the number of bidders for round, and Al,q is the time to prepare the proposal for auction of 

the participating agents. For tender, PIk is the specification of the initial conditions in which a service is required, 

PEK is the process of selecting the service agent, j is equal to a round (j=1, in the tender case), nj number of bidders, 

and Al,q is the time to prepare the proposal for bidding agents. For both coordination mechanisms, PI, PE and A, 

according to Table 1, are parameters qualitatively measured (e.g., low, medium and high).  

Table 1: Qualitatively Values of the Parameters PI, PE and A 

CM 𝑷𝑰 𝑷𝑬 A 

Tender (L) Medium Medium Medium 

English and Dutch 

Auction (SI, SH) 
Low Medium Low 

To measure these parameters with numbers (due to that the equations require it), we have considered the Likert scale 

as reference  [9], which allows us to assign numerical values to such parameters. Thus, we assign the value 0.2 to 

low, 0.6 to medium, and 1 to high. The other parameters are quantifiable.  

The communication cost is based on the estimated time for messages exchange (communicative acts) for each CM 

in each conversation, and it is given in the equation (3) (FIPA has defined the communicative acts of each CM): 

 𝐶𝐶𝑖 ,𝑘 =    𝐶𝐸𝑃𝑙 ,𝑟 +  𝐶𝐸𝑂𝑙 ,𝑠

𝑛𝑗

𝑠=1
𝑁−1
𝑟=1  +  𝐶𝑆𝑟

𝑁−1
𝑟=1

𝑗
𝑙=1  (3) 

Where j is the number of rounds, N-1 the number of agents least the sender of message and nj is the number of 

participants in each round. For auction and tender, CEP is the sending cost of the initial proposal, CEO is the 

sending cost of bids and CS is the cost of informing who makes service. Table 2 shows the qualitative values for the 

parameters CEP, CEO, CS. 

Table 2: Parameters CEP, CEO, CS 

CM 𝑪𝑬𝑷 𝑪𝑬𝑶 CS 

Tender (L) Low Medium Low 

English and Dutch 

Auction (SI, SH) 
Low Medium Low 

 

3.3 Belief Space 

There are two categories of knowledge in the belief space: situational and normative. 

3.3.1 Situational Knolwledge 

Offsprings 

Crossover Point 

Parents 
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In situational knowledge are kept examples of successful and unsuccessful individuals. In our model, this 

knowledge is based on each TCs, which include each CM used for performing this TC, their rate of occurrence (IO), 

and finally the total occurrences (TO) of the TC (see Fig. 6). 

TCs CMi IO(TCs, MCi, t-1) TO(TCs) 

∀   𝑠 =  1, 2, 3,4 , 𝑖 =  1, 2, … , 𝑛  

Figure 6: Situational Knowledge 

3.3.2  Normative Knowledge 

The normative knowledge keeps the suitable ranges for each of the variables of the CM used by the situational 

knowledge. In Fig. 7, LI and LS are the lower and upper limits of each parameter P
i
 forming each CM.  

CMi P
1
 P

2
 

… 
P

u
 

LI LS LI LS LI LS 

∀  𝑖 =  1, 2, … , 𝑛  

Figure 7: Normative Knowledge 

3.4 Communication Protocol 

Functions of acceptance and influence are those that allow the interaction between the population space and the 
belief space. These functions in this proposal are: 

3.4.1 Acceptance Function  for the Situational Knowledge 

This function takes a percentage of the population (20% of individuals is sufficient according to Reynolds [5]), in 
order to nurture the belief space with their experiences. The acceptance function updates the situational knowledge 
as follows: for a specific TC each of the mechanisms involved in this type of conversation is updated by the 
equation (4), where s=4, because 4 is the number of the TC defined in section 2.1: 

 𝐼𝑂(𝑇𝐶𝑠 ,𝑀𝐶𝑖 ,𝑡) = 𝐼𝑂(𝑇𝐶𝑠 ,𝑀𝐶𝑖 ,𝑡−1) +  𝑁𝑂(𝑇𝐶𝑠 ,𝑀𝐶𝑖 ,𝑡)/𝑇𝑂(𝑇𝐶𝑠 ,𝑡)   (4) 

∀   𝑠 =  1, 2, 3,4 , 𝑖 =  1, 2, … , 𝑛  

Where IO(TCs, MCi, t) is the rate of occurrence in the iteration t for the TC s and the MCi. IO(TCs, MCi, t-1) is the rate of 

occurrence in the iteration t-1 which is currently in the belief space, TO(TCs) is the total of occurrences of TC s, and 

NO(TCs, MCi, t) is the number of occurrences in the current instantiation of the MAS of MCi for this TC s. It is also 

necessary to update the total occurrences TO, by using the equation (5), where k is the number of CM used in this 

TC s: 

 𝑇𝑂(𝑇𝐶𝑠 ,𝑡) = 𝑇𝑂(𝑇𝐶𝑠 ,𝑡−1) +  𝑁𝑂(𝑇𝐶𝑠 ,𝑀𝐶𝑖 ,𝑡)𝑖
𝑘
𝑖=1   (5) 

∀   𝑠 =  1, 2, 3,4 , 𝑖 =  1, 2, … , 𝑛  

3.4.2 Acceptance Function  for the Normative Knowledge 

The acceptance function updates the normative knowledge by the following equation: 

                𝐿𝑎𝑐 𝑃𝑢 =    𝑙𝑣 ∗ 𝑚 + 𝑃 ∗ 𝑚 /2  (6) 

Where, Lac(P
u
) is the current limit (either LI or LS), Lv is the previous limit, 𝑚  is the complement of the moment, 

namely, (1 - m), 𝑃  is the average value of the limit of all individuals accepted within 20% from the population. 

Finally, m is the moment, that is given by the equation: 

 m = t  (7) 

   Where  is a time constant between 0 and 1, and t is the iteration number, (t = 1, 2, 3 ...). Thus, each time it 
reaches a new experience of the people, the limits of each parameter of the mechanism are updated.  

3.4.3 Influence Function 

The influence function determines how the knowledge of the system influences the individuals in the population. In 

the case of situational knowledge, it is based on the use of the mutation operator, which switches the current CM of 

a given conversation, according to a probabilistic rule (stochastic universal sampling or roulette wheel [10]), based 

on the IO parameter of each TC (we call that a targeted mutation). 
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In the case of normative knowledge also is based on the mutation operator, only that here the complete structure is 

not changed, but only specific values of the ranges are setting for each parameter of a given CM. 

4 Design and Implementation of Cultural System of Multi-Agent Learning (CLEMAS). 

CLEMAS is a computational tool to implement the proposed learning model. CLEMAS requires the configuration 

of various parameters. Upon the execution of the model, CLEMAS can display which CM is proposed for each 

conversation/ sub-conversation of the MAS. Moreover, CLEMAS can display the progress of the learning process.  

4.1 CLEMAS Components 

This tool has four main components: the execution engine, a system that emulates the CA, a graphical interface for 

configuring the system initially and visualizes the learning process with their results, and a database that stores the 

existing prior knowledge in the belief space (Fig. 8).  

 

 

 

 

 

Figure 8: Structure of CLEMAS 

The execution engine component runs the learning process through a class called 'simulation', using for this the 
initial system configuration. The CA component represents individuals and the belief space. The knowledge base 
component stores the situational and normative knowledge in belief space (a file with the extension .ccg). The 
following section details each of the components of CLEMAS.   

4.2 Design of CLEMAS 

4.1.1 Representation of the Individuals 

To represent an individual in MAS a class called 'Individuo' is used, whose main attributes are a set of 
conversations, sub-conversations, an objective function and an identifier. The value of the objective function is 
calculated in each of the iterations; all calculations are performed by using the equations (1), (2) and (3) of section 
3.2. Conversations in an individual contain a set of sub-conversations, whose main attributes are a TC and a CM. 
The classes used for the definition of the individual are shown in Fig. 9. 

4.2.1 Representation of the Belief Spaces 

To update the knowledge of the belief space the acceptance function is used, and in order to use this knowledge in 

the population the influence function is used. The classes used to develop the belief space are three. 

 EspacioCreencias: it is the class that models the belief space; its main attributes are a set of both situational 

and normative knowledge. Also, it is responsible for implementing the functions of acceptance and 

influence. 

 ConocimientoCircunstancial: it represents a situational knowledge; its main attributes are an identifier for 
the TC and one for the CM, an index of occurrence and the total of occurrence. 

 ConocimientoNormativo: it represents a normative knowledge; its main attributes are an identifier of the 
CM, the list of its parameters and the lower and upper values of them. 
 

4.2.2 Execution Engine 

To run the learning model a class called 'Simulacion' is proposed, and its main attributes are maximum number of 
generations, population size, acceptance rate, crossover probability, mutation probability, a beliefs space and a set of 
state (this attribute allows to use the knowledge gained in previous simulations). This class 'simulacion' is 
responsible for the initialization of the system, determines which ones are the best individuals who will influence the 
belief space in each of iterations, the genetic operators to be used to create the next generation, and keeps track of 
what happens along simulation. To do this, it uses the following classes: 

 CruzarIndividuos: is responsible for creating new individuals using crossover operator. 

 MutarIndividuo: is responsible for creating a new individual using the mutation operator. The types of 
mutation are: direct mutation is a targeted mutation which is influenced by the belief space; and normal 
mutation is the classical mutation. The mutation is carried out with a certain probability. This class selects 
randomly the conversations and sub-conversations that are going to be mutated. 

Execution 

Engine 

Cultural 

Algorithm 
Knowledge 

Base  

 

 

Graphical Interface  
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Figure 9: UML Diagram for the class “Individuo” 

 States: This class stores, at each iteration, the knowledge generated into the belief space. It invokes the 
classes ConocimientoNormativo and ConocimientoCircunstancial, representing the cognitive structures 
that are stored in the belief space. 

4.2.3 Control Panel for setting the Simulation Conditions  

This panel has the different controls necessary to run CLEMAS (see Section 5 for examples of this panel). For this, 

the following classes are defined: 

 PanelCentral: class with the main panel of the system, it allows to set up the initial parameters of CLEMAS. 

 PanelConversacionesCreadas: with this class we can create, edit and modify the conversations. 

 PanelConversacion: with this class we can edit the conversations. 

 PanelSubConversacion: this class allows designing a sub-conversation, creating the components that allow 
the user to set the type of conversation, the parameters of each mechanism, the maximum of rounds (in the 
case of auction) and the number of agents involved in the sub-conversation. 

4.2.4 Panel to display the results 

It defines a window that displays the results in each iteration. To achieve it, several classes are designed:  

 PanelResultados: It is responsible for creating the output window. It receives as parameter a reference to the 
'Simulacion' class, processes all the information obtained from the simulation, and creates the visual 
components that allow the user to see the results (see Section 5 for examples of this panel). 

 PanelGraficoFO: This mechanism is responsible for plotting the behavior of the CA throughout the 

simulation. 

 PanelGraficoMecanismo: This class calculates the average use of CM for 20% of individuals accepted in 

each of iterations, and performs a graphic of CM with respect to iterations, namely, number of generations. 

 PanelTabla: Create the table percentage of use of each CM with respect to TC. 

 PanelHistorial: This class is in charge of creating a window for displaying detailed historical information 

about each of iterations in the simulation. It shows the situational and normative knowledge evolution, 

further genetic operators, in particular when using direct or normal mutation. 

 

5 Experimentation with CLEMAS 

In this section different experiments have been carried out to show the performance of our learning model. For this, 

we consider a case of study oriented to the agent-based industrial automation, described briefly below.  

5.1 Case of Study: Fault Management System MAS-based  

This case of study is a MAS for faults handling in industrial processes, whose specification is described in detail in 

[11]. The Fault Management Systems (FMS) is a system at the supervision level of an industrial process. The FMS 
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is composed of two modules, the first performs the monitoring and failure analysis, and the second performs the 

tasks of the maintenance management system. FMS interacts with the Maintenance Engineering and the Fault 

Tolerant Process. FMS can be seen as a system composed of intelligent agents that cooperate to solve problems 

related to the handling of system failures. Furthermore, some activities of the FMS follow a distributed computing 

model, such as those performed for the fault detection in equipment or processes, the performance index estimation, 

among others. To illustrate the application of our proposed CA-based learning for the coordination of the MAS, two 

specific conversations of MAS-based FMS are taken. Before that, the coordination model is presented in a general 

way.  

Coordination Model: The MAS has six conversations that are: maintenance by condition (C1), maintenance tasks 

(C2), urgent tasks (C3), replanning of tasks (C4), state of maintenance (C5), and identify functional failure (C6). 

Only two will be detailed by using the TC proposed in section 2.1: 

 Conversation 4 (C4): Replanning of Tasks, this conversation is made up of three sub-conversations: C4.1 

of type TC1, C4.2 of type TC3 and C4.3 of type TC4. 

Description: Through this conversation, the coordinator agent seeks information from the database agent 

to reschedule outstanding maintenance tasks on the system, and make a new maintenance plan. If the task 

is urgent and it cannot reschedule, an alarm is given. 

 Conversation 5 (C5): State of Maintenance, this conversation is made up of four sub-conversations: C5.1 

of type TC1, C5.2 of type TC1, C5.3 of type TC3 and C5.4 of type TC4. 

Description: Through this conversation, the observer agent seeks information from the database and the 

actuator agent, to store outstanding maintenance tasks on the system. 

In Fig. 10, the interaction diagram of the conversation C5 is presented, in order to show the characterization of TCs 
in the sub-conversations. In that conversation the observer agent (AO) makes a consult (TC1) in the database twice 
(process information (TC1) and maintenance information (TC1)), reports (inform, TC3) to the actuator agent (AA) 
the maintenance tasks, and if those have been not made, requests (TC4) to agent database (ABD) to be incorporated 
into the database. 

AO ABD AA

1: Buscar Información

de Proceso

2: Respuesta a Buscar

Información Proceso

3: Buscar Información

Mantenimiento

4: Respuesta a Buscar

Información Mantenimiento

5: Reporte Tareas  de Mantenimiento

6: Confirmación de Reporte Tareas de Mantenimiento

7: Tareas Pendientes

8: Confirmación de

Tareas Pendientes

 

Figure 10: Conversation with his TCs  

5.2 Design of the Experiments 

For the case study, two different scenarios have been characterized: 

Scenario 1: For this scenario, we assume C4 to be optimized only the sub-conversation (C4.1) which has 4 agents (3 

database agents and 1 coordinator agent), and C5 to be optimized for a single sub-conversation (C5.3) with 3 agents 

(1 observer agent and 2 actuators agents). The objective of the simulation is to show how the number of iterations 

influences the learning process. To achieve this, CLEMAS is simply configured with a low number of generations. 

For the maximum number of auction rounds is 5 and for tender 1. The initial values of the parameters of the 

mechanisms are: C0 = [5 ... 15] ε = [5 ... 20], CP(j) = [1 ... 5]. To tender M(F) = [1 ... 3], and f(T) = [5 ... 20]. For this 

simulation the population is 20 individuals, 8 generations (8 iterations), crossover probability of 0.7 and mutation of 

0.5.    

Scenario 2: In this scenario the same sub-conversations are assumed to be optimized, but for C4.1 the number of 

agents was increased to double, that is, 8 agents; likewise for C5.3 is increasing to 6 agents, this is in order to 

observe the behavior of the system scalability. Also, the number of generations is increases to 16 to see if 

individuals actually improve their behavior. The values of the initial parameters, population and genetic probabilities 

remain the same in this scenario. 

 

 

TC1 

TC3 

TC4 

TC1 
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5.3 Simulation Results 

Fig. 11 shows the numerical summary presented by CLEMAS at the end of the simulation. In this case, for the 

scenario 1, a detailed description of the final results concerning to the evolutionary process and historical results in 

each of iterations are given in the Fig. 12. 

 
Figure 11: Summary table of results in CLEMAS for the Scenario 1 

In Fig. 12, we see that the TC being optimized were TC1 (consult) and TC3 (inform), which are precisely the TC 

using C4.1 and C5.3. The coordination mechanisms L and SI were used almost interchangeably for TC1, and SH is 

used 81.25% of the time for TC3. In Fig. 12 (a) shows that during the first three generations prevailed L (called 

‘Licitacion’ in the Fig. 12), but from that generation SH (called ‘subasta Holandesa’ in the Fig. 12) prevailed. In 

Fig. 12 (b) the red curve represents the average objective function of the population. The blue curve represents the 

objective function of 20% of the population (selected for the individual acceptance function). Finally the green 

curve represents the average of the remaining 80% of the population. As can be seen, the two curves (total average 

and not accepted population) are largely far from of the accepted average (desired behavior). 

 
Figure 12: (a) Graphic of the evolution of the CM and (b) The objective function for the Scenario One. 

 

According to Fig. 13, for the scenario 2, SH is predominating in TC3 and L is predominating in TC1. This makes 

sense because the number of agents increases in TC3, which generates a cost that can be minimized using SH. 

Regarding TC1, the use of L will be increased, because it reduces the costs for being a single round. 

 

 
Figure 13: Summary table of results in CLEMAS for the Scenario Two 

Fig. 14(a) shows that the SH and the L curves are very close, from the ninth generation; this is due to the increase in 

the number of agents in each sub-conversation. Finally, Fig. 14(b) shows the difference between the objective 

functions in the early generations, but as individuals evolve (greater number of generations), its tendency is to 
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follow the blue curve, which are the best individuals, this is because increasing the number of generations 

individuals acquire greater knowledge and learning (they follow the collective knowledge). 

 
Figure 14: (a) Graphic of the evolution of the CM and (b) The objective function for the Scenario Two. 

 

6 Comparison of Model Based on Cultural Algorithms with other Models of Learning 

Before comparing the model proposed with other learning techniques, is important to note the following: the 
learning model proposed in this paper has the distinction of not needing to simulate the services of the MAS, i.e., 
our proposal does not consider decisions, actions, or internal orders, to achieve the goals of the MAS, since we 
assume that the MAS achieves its tasks in full. The focus of the proposal is that each individual of CA is an 
instantiation of the conversations of the MAS, characterized by a set of CMs, in order to communicate among them. 
These individuals share a common space (the space of beliefs) accessible to each ones. This is where the learning 
emerges, proposing a suitable CM for every TC. Below is a table comparing the Bayesian model in RL proposed in 
[7] and our model based on CA. The table consists of the most important aspects in both models: learning source 
(here we compare in which model for learning is based), performance measurement (here we explore how the 
evaluation of the learning process in each model is), knowledge and experience (which past experiences and 
knowledge are used for learning). 

Table 3: Comparison of Models RL and CA 

Features RL CA 

Learning 
source 

Action and 
reward functions 

Conversations, types of 
conversations, 
coordination 
mechanisms and 
objective function 

performance 
measurement 

Rewards (R) 
actions based 
calculated on the 
Bellman equation  

Processing and 
communication costs 
calculated by the 
objective function (OF) 

knowledge 
and 
experience 

<s, a, r, t> 
Situational and 
normative 

Table 3 shows that the learning source is different in both models. The RL models observe the actions of 

individuals, and based on achieved rewards they learn. This requires sharing actions and rewards among the agents 

to make everyone learn/know what the other do, which is quite demanding. In our model based on CA, the 

individuals base their learning for each observed performance (through the FO) in a particular type of conversation 

(TC), and transfer that information, characterized by the TC and CM used, in a common space for all individuals 

(belief space). Both models have performance measures based on costs and rewards. The learning equation in RL is 

based on the Bellman equation, which seeks to maximize rewards. In the case of CA the idea is to minimize the 

costs of communication and processing of the CM. The experiences used in RL are based on states (s, current state; 

t, future state; a, actions; and r, rewards). The level of knowledge in RL is very particular because it is based on 

events leading from a current state to a future state, and accumulated rewards of these actions. In CA the belief 

space consists of a situational knowledge, which is knowledge of successful experiences of individuals, and 
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normative knowledge, which are ranges of favorable values of each CM, but also other kinds of knowledge could be 

incorporated. Thus, in general, one can conclude: 

 The goal of coordination in RL is based on actions and strategies adopted by individuals, having as indices 
performance rewards that allow assessing these actions. In CA, the learning is achieved about the 
coordination schemes that would best suit the MAS for different TC, considering its computation and 
communication costs. 

 CA has greater robustness with respect to RL, because the knowledge and experiences it uses are the result 
of a evolution, beyond seek to coordinate actions to achieve a given task. 
 

7 Conclusions 

Cultural algorithms are presented as a powerful learning tool for individuals in different societies. In this work it has 
been used to learning how to coordinate MAS. A learning model of coordination schemes for communities of agents 
using CA is proposed. The cultural model is systematized in the CLEMAS platform, which allows interactively test 
different scenarios for a case of study. It graphically displays the results of these scenarios. 
One of the main advantages of the system is its simplicity and flexibility to adapt to any scenario, allowing tests of 
aspects like scalability, size of the agent community, etc. In addition, all the accumulated knowledge in the belief 
space can be reused by the system to optimize the CM of other MAS. In summary, we have presented a Cultural 
Learning System for coordination schemes for MAS, and the same has been applied to a case study, a fault handler 
system based on MAS. CLEMAS is presented as a useful tool for collective learning in communities of agents, and 
can handle different types of knowledge (in our case, situational and normative). 
Further works will do a more thorough study of the different parameters that can be considered in a learning process 
of coordination mechanisms of MAS (number of agents, number of communications, etc.), and about the suitable 
values of CLEMAS (number of generations, probabilities, etc.). 
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