CLEI ELECTRONIC JOURNAL, VOLUME 15, NUMBER 3, PAPER 8, DECEMBER 2012

Parallel implementations of the MinMin heterogeneous
computing scheduler in GPU

Mauro Canabé
Centro de Calculo, Facultad de Ingenieria
Universidad de la Republica, Uruguay
mcanabe@fing. edu.uy

and

Sergio Nesmachnow
Centro de Calculo, Facultad de Ingenieria
Universidad de la Republica, Uruguay
sergion@fing. edu.uy

Abstract

This work presents parallel implementations of the MinMin scheduling heuristic for het-
erogeneous computing using Graphic Processing Units, in order to improve its compu-
tational efficiency. The experimental evaluation of the four proposed MinMin variants
demonstrates that a significant reduction on the computing times can be attained, al-
lowing to tackle large scheduling scenarios in reasonable execution times.

Keywords: GPU computing, heterogeneous computing, scheduling.

1 Introduction

In the last fifteen years, distributed computing environments have been increasingly used to solve complex
problems. Nowadays, a common platform for distributed computing usually comprises a heterogeneous
collection of computers. This class of infrastructures includes grid computing and cloud computing environ-
ments, where a large set of heterogeneous computers with diverse characteristics are combined to provide
pervasive on demand and cost-effective processing power, software, and access to data, for solving many
kinds of problems [1, 2].

A key problem when using such heterogeneous computing (HC) environments consists in finding a schedul-
ing strategy for a set of tasks to be executed. The goal is to assign the computing resources by satisfying
some efficiency criteria, usually related to the total execution time or resource utilization [3, 4]. The het-
erogeneous computing scheduling problem (HCSP) became specially important due to the popularization of
heterogeneous distributed computing systems [5, 6].

Traditional scheduling problems are NP-hard [7], thus classic exact methods are only useful for solving
problem instances of very reduced size. Heuristics methods are able to get efficient schedules in reasonable
times, but they still require long execution times when solving large instances of the scheduling problem.
These execution times (i.e., in the order of an hour) can be extremely high for performing on-line scheduling
in realistic HC infrastructures.

High performance computing techniques can be applied to reduce the execution times required to perform
the scheduling. The massively parallel hardware in Graphic Processor Units (GPU) has been successfully
applied to speed up the computations required to solve problems in many application areas [8], showing an
excellent trade-off between cost and computing power [9].

The main contribution of this work is the development of four parallel implementations on GPU for
a the classic and effective scheduling heuristic MinMin [10]. The experimental evaluation of the proposed
parallel methods demonstrates that a significant reduction on the computing times can be attained when
using the parallel GPU hardware. This performance improvement allows solving large scheduling scenarios
in reasonable execution times.

The manuscript is structured as follows. Next section introduces the HCSP mathematical formulation,
and the heuristics studied in this work. A brief introduction to GPU computing is presented in Section 3.

CLEI ELECTRONIC JOURNAL, VOLUME 15, NUMBER 3, PAPER 8, DECEMBER 2012

Section 4 describes the four proposed implementations of the MinMin heuristic on GPU. The experimental
evaluation of the proposed methods is reported in Section 5, where the efficiency results are also analyzed.
Finally, Section 6 summarizes the conclusions of the research and formulates the main lines for future work.

2 Heterogeneous computing scheduling

This section presents the HCSP and its mathematical formulation. It also provides a description of the class
of list scheduling heuristics, and describes the MinMin method parallelized in this work.

2.1 HCSP formulation

An HC system is composed of many computers, also called processors or machines, and a set of tasks to be
executed on the system. A task is the atomic unit of workload, so it cannot be divided into smaller chunks,
nor interrupted after it is assigned to a machine. The execution times of any individual task vary from one
machine to another, so there will be competition among tasks for using those machines able to execute them
in the shortest time.

Scheduling problems mainly concern about time, trying to minimize the time spent to execute all tasks.
The most usual metric to minimize in this model is the makespan, defined as the time spent from the moment
when the first task begins execution to the moment when the last task is completed [4].

The following formulation presents the mathematical model for the HCSP aimed at minimizing the
makespan:

e given an HC system composed of a set of machines P = {my,...,mp} (dimension M), and a collection

of tasks T'= {t1,...,tn} (dimension N) to be executed on the system,

e let there be an ezecution time function ET : T x P — R", where ET(t;,m;) is the time required to
execute the task ¢; in the machine mj,

e the goal of the HCSP is to find an assignment of tasks to machines (a function f : T — PM) which
minimizes the makespan, defined in Equation 1.
ET(t;,m; 1
max > ET(ti,m;) (1)

t,€T:
F(ty)=m;

In the previous HCSP formulation all tasks can be independently executed, disregarding the execution order.
This kind of applications frequently appears in many lines of scientific research, specially in Single-Program
Multiple-Data applications used for multimedia processing, data mining, parallel domain decomposition of
numerical models for physical phenomena, etc. The independent tasks model also arises when different
users submit their (obviously independent) tasks to execute in grid computing and volunteer-based comput-
ing infrastructures -such as TeraGrid, WLCG, Berkeley’s BOINC, Xgrid, etc. [11]-, where non-dependent
applications using domain decomposition are very often submitted for execution. Thus, the relevance of
the HCSP version faced in this work is justified due to its significance in realistic distributed HC and grid
environments.

2.2 List scheduling heuristics

The class of list scheduling heuristics comprises many deterministic scheduling methods that work by as-
signing priorities to tasks based on a particular criterion. After that, the list of tasks is sorted in decreasing
priority and each task is assigned to a processor, regarding the task priority and the processor availability.
Algorithm 1 presents the generic schema of a list scheduling method.

Algorithm 1 Schema of a list scheduling algorithm.

1: while tasks left to assign do

2 determine the most suitable task according to the chosen criterion
3: for each task to assign, each machine do

4: evaluate criterion (task, machine)

5 end for

6 assign the selected task to the selected machine

7: end while

Since the pioneering work by Ibarra and Kim [12], where the first algorithms following the generic schema
in Algorithm 1 were introduced, many list scheduling techniques have been proposed to provide easy methods

CLEI ELECTRONIC JOURNAL, VOLUME 15, NUMBER 3, PAPER 8, DECEMBER 2012

for tasks-to-machines scheduling. This class of methods has also often been employed in hybrid algorithms,
with the objective of improving the search of metaheuristic approaches for the HCSP and related scheduling
problems.

The simplest list scheduling heuristics use a single criterion to perform the tasks-to-machines assignment.
Among others, this category includes: Minimum Ezecution Time (MET), which considers the tasks sorted
in an arbitrary order, and assigns them to the machine with lower ET for that task, regardless of the machine
availability; Opportunistic Load Balancing (OLB), which considers the tasks sorted in an arbitrary order,
and assigns them to the next machine that is expected to be available, regardless of the ET for each task
on that machine; and Minimum Completion Time (MCT), which tries to combine the benefits of OLB and
MET by considering the set of tasks sorted in an arbitrary order and assigning each task to the machine
with the minimum CT for that task.

Trying to overcome the inefficacy of these simple heuristics, other methods with higher complexity have
been proposed, by taking into account more complex and holistic criteria to perform the task mapping, and
then reduce the makespan values. This work focuses on one of the most effective heuristics in this class:

e MinMin, which greedily picks the task that can be completed the soonest. The method starts with
a set U of all unmapped tasks, calculates the MCT for each task in U for each machine, and assigns
the task with the minimum overall MCT to the best machine. The mapped task is removed from U,
and the process is repeated until all tasks are mapped. MinMin improves upon the MCT heuristic,
since it does not consider a single task at a time but all the unmapped tasks sorted by MCT and by
updating the machine availability for every assignment. This procedure leads to balanced schedules
and also allows finding smaller makespan values than other heuristics, since more tasks are expected
to be assigned to the machines that can complete them the earliest.

The computational complexity of MinMin heuristic is O(N3), where N is the number of tasks to schedule.
When solving large instances of the HCSP, large execution times are required to perform the task-to-machine
assignment (i.e. several minutes for a problem instance with 10.000 tasks). In this context, parallel computing
techniques can be applied to reduce the execution times required to find the schedules.

GPU computing has been used to parallelize many algorithms in diverse research areas. However, to the
best of our knowledge, there have been no previous proposals of applying GPU parallelism to list scheduling
heuristics.

3 GPU computing

GPUs were originally designed to exclusively perform the graphic processing in computers, allowing the Cen-
tral Process Unit (CPU) to concentrate in the remaining computations. Nowadays, GPUs have a considerably
large computing power, provided by hundreds of processing units with reasonable fast clock frequencies. In
the last ten years, GPUs have been used as a powerful parallel hardware architecture to achieve efficiency
in the execution of applications.

GPU programming and CUDA. Ten years ago, when GPUs were first used to perform general-purpose
computation, they were programmed using low-level mechanism such as the interruption services of the BIOS,
or by using graphic APIs such as OpenGL and DirectX [13]. Later, the programs for GPU were developed
in assembly language for each card model, and they had very limited portability. So, high-level languages
were developed to fully exploit the capabilities of the GPUs. In 2007, NVIDIA introduced CUDA [14], a
software architecture for managing the GPU as a parallel computing device without requiring to map the
data and the computation into a graphic API.

CUDA is based in an extension of the C language, and it is available for graphic cards GeForce 8 Series
and superior. Three software layers are used in CUDA to communicate with the GPU (see Fig. 1): a
low-level hardware driver that performs the CPU-GPU data communications, a high-level API, and a set of
libraries such as CUBLAS for linear algebra and CUFFT for Fourier transforms.

For the CUDA programmer, the GPU is a computing device which is able to execute a large number of
threads in parallel. A specific procedure to be executed many times over different data can be isolated in a
GPU-function using many execution threads. The function is compiled using a specific set of instructions
and the resulting program (named kernel) is loaded in the GPU. The GPU has its own DRAM, and the
data are copied from the DRAM of the GPU to the RAM of the host (and viceversa) using optimized calls
to the CUDA API.

The CUDA architecture is built around a scalable array of multiprocessors, each one of them having
eight scalar processors, one multithreading unit, and a shared memory chip. The multiprocessors are able
to create, manage, and execute parallel threads, with small overhead. The threads are grouped in blocks

CLEI ELECTRONIC JOURNAL, VOLUME 15, NUMBER 3, PAPER 8, DECEMBER 2012

CPU
Application

CUDA runtime

' v

CUDA driver

!

GPU

CliDA library

Figure 1: CUDA architecture.

(with up to 512 threads), which are executed in a single multiprocessor, and the blocks are grouped into
grids. When a CUDA program calls a grid to be executed in the GPU, each one of the blocks in the grid is
numbered and distributed to an available multiprocessor. When a multiprocessor receives a block to execute,
it splits the threads in warps, a set of 32 consecutive threads. Each warp executes a single instruction at a
time, so the best efficiency is achieved when the 32 threads in the warp executes the same instruction. Each
time that a block finishes its execution, a new block is assigned to the available multiprocessor.

The threads access the data using three memory spaces: a shared memory used by the threads in the
block; the local memory of the thread; and the global memory of the GPU. Minimizing the access to the slower
memory spaces (the local memory of the thread and the global memory of the GPU) is a very important
feature to achieve efficiency. On the other hand, the shared memory is placed within the GPU chip, thus it
provides a faster way to store the data.

4 MinMin implementations on GPU

The GPU architecture is better suited to the Single Instruction Multiple Data execution model for parallel
programs. Thus, GPUs provide an ideal platform for executing parallel programs based on algorithms that
use the domain decomposition strategy, especially when the algorithms execute the same set of instructions
for each element of the domain.

The generic schema for a list scheduling heuristic presented in Algorithm 1 applies the following strategy:
for each unassigneed task the criterial are evaluated on all machines and the task that best meets the criteria
is selected and assigned to the machine which generates the minimum MCT. Clearly, this schema is an ideal
case for applying a task-based or machine-based domain decomposition to generate parallel versions of the
heuristics.

The four MinMin implementations on GPU designed in this work are based on the same generic parallel
strategy. For each unassigned task, the evaluation of the criteria for all machines is performed in parallel
on the GPU, building a vector that stores the identifier of the task, the best value obtained for the criteria,
and the correspondent machine to get that value. The indicators in the vector are then processed in the
reduction phase to obtain the best value that meets the criteria, and then the best pair (task, machine) is
assigned. It is worth noting that the processing of the indicators to obtain the optimum value in each step is
also performed using the GPU. A graphical summary of the generic parallel strategy applied in the parallel
MinMin algorithms proposed in this article is presented in Fig. 2.

woor LT T T T T T TT T T
A A ArAVArAVArar.
VNIV ANV AVAVANAVAVAVANAN
VAVAVAVAVAVIVIVIVIDIVIDIY,
(I T TG T TCT(T T
| GPU threads |

Figure 2: Generic parallel strategy for MinMin on GPU.

CLEI ELECTRONIC JOURNAL, VOLUME 15, NUMBER 3, PAPER 8, DECEMBER 2012

Four variants of the proposed MinMin implementation in GPU were designed:

1. Parallel MinMin using one GPU (MinMin-1GPU), which executes on a single GPU, applying the
aforementioned generic procedure;

2. Parallel MinMin in four GPUs with domain decomposition using pthreads (MinMin-4GPU-PT), which
applies a master-slave multithreading programming approach implemented with POSIX threads (PThreads)
that executes the same algorithm on four GPUs independently. The employed domain partition strat-
egy splits the domain (i.e. the set of tasks) into N equally sized parts (being N the number of GPUs
used, four in our case), so that each task belongs to only one subset. Thus, each GPU performs the
MinMin algorithm on a subset of the tasks input data on all machines, and a master process consolidate
the results after each GPU finishes its task;

3. Parallel MinMin in four GPUs with domain decomposition using OpenMP (MinMin-4GPU-OMP),
which applies the same master-slave strategy than the previous variant, but the multithreading pro-
gramming is implemented using OpenMP. The only difference between this implementation and the
previous variant lies in how the threads are handled, in this case they are automatically managed and
synchronized using OpenMP directives included in the implementation. The code for loading input
data, dumping the resulting data, performing the domain partition, and implementing the GPU kernel
are identical to the one used in MinMin-4GPU-PT;

4. Parallel synchronous MinMin in four GPUs and CPU (MinMin-4GPU-sync), which also applies a
domain decomposition but it follows an hybrid approach. In each iteration, each GPU performs a single
step of the MinMin algorithm, then a master process running in CPU assesses the result computed
by each GPU and select the one that best meets the proposed criteria (i.e. MCT minimization), and
finally the information of the selected assignment is updated in each GPU. This variant applies a
multitheading approach implemented using pthreads to manage and synchronize the threads.

Figure 3 describes the parallel strategy used in the proposed implementations MinMin-4GPU-PT and
MinMin-4GPU-OMP, where the CPU threads are defined and handled by using pthreads and OpenMP,
respectively. Figure 4 describes the parallel strategy used in the synchronous implementation MinMin-
4GPU-sync.

A specific data representation was used to accelerate the execution of the sequential implementation of
the MinMin heuristic, in order to perform a fair comparison with the execution times of the GPU imple-
mentations. The sequential implementation use a data matrix (SoA) where each row represents a task and
each column represents a machine. Thus, when performing the processing for tasks (rows), the entries are
loaded to the cache of the processing core, allowing a faster way to access the data.

CLEI ELECTRONIC JOURNAL, VOLUME 15, NUMBER 3, PAPER 8, DECEMBER 2012

Input data
I tasks |
T
Domain decomposition

CPU thread CPU thread CPU thread CPU thread

—tasks / a—] —tasks 14— —tasks / a—] —tasks 14—
i T i T
i i i i

Execute on GPU

GPU GPU GPU GPU

|—tasks /4 —] |— tasks [4—] |—tasks /4 —] |— tasks [4—]
Ve LT T Vestor L1171 Ve LT T Veetor (1T 171
T T T T
< [T L N Ardarar < [T L N Ardarar
é/\// é/\// é/\// é/\//
1 KK N wiwiail 1 KK N isiwiail

|-GPU threads=| |-GPU threads— |-GPU threads=| |-GPU threads—

|—tasks 1 4—] |—tasks / 4—] |—tasks 1 4—] |—tasks / 4—]

result result result result
vector [T 17171 vector LT [T vector LT 17171 vector LT T 7]

Consolidate the results

tasks

e I T

Figure 3: Parallel strategy used in MinMin-4GPU-PT and MinMin-4GPU-OMP.

For parallel algorithms executing on GPU, loading the data matrix in the same way reduces the com-
putational efficiency. Adjacent threads would access to the data stored in contiguous rows, but these are
not stored contiguously, thus they cannot be stored in shared memory. When the data matrix is loaded so
that each column represent a task and each row represent a machine, two adjacent threads in GPU access
to the data stored in contiguous columns. These data are stored in contiguous memory locations, so they
can be loaded in the shared memory, allowing to perform a faster data access for each thread, and therefore
improving the execution of the parallel algorithm on GPU.

Preliminary experiments were also performed using a domain decomposition strategy that divides the

data by machines rather than by tasks, but this option was finally discarded due to scalability issues as the
problem size increases.

CLEI ELECTRONIC JOURNAL, VOLUME 15, NUMBER 3, PAPER 8, DECEMBER 2012

Input data

tasks 1

J——machines =—q

Domain decomposition
CPU threads

J——machines ——]j

}—tasks 74—
Execute on GPU

GPU [GPU threads=| 51 - .
e (I
1))
o LCICICI(
ERRIRIRIR
4

|—tasks / 4 =—| m

result for

J—machines ==y

single step I
next ste
p _result for D D D
single step
Consolidate the results
synchronization
best result
for step
It
ool LT T T T T T TTTTTTT11]
I task i
NO all tasks
assigned?
YES

Figure 4: Parallel strategy used in MinMin-4GPU-sync.

CLEI ELECTRONIC JOURNAL, VOLUME 15, NUMBER 3, PAPER 8, DECEMBER 2012

5 Experimental analysis

This section presents the experimental evaluation of the proposed MinMin implementations on GPU.

5.1 HCSP scenarios

No standardized benchmarks or test suites for the HCSP have been proposed in the related literature [15].
Researchers have often used the suite of twelve instances proposed by Braun et al. [16], following the expected
time to compute (ETC) performance estimation model by Ali et al. [17].

ETC takes into account three key properties: machine heterogeneity, task heterogeneity, and consistency.
Machine heterogeneity evaluates the variation of execution times for a given task across the HC resources,
while task heterogeneity represents the variation of the tasks execution times for a given machine. Regarding
the consistency property, in a consistent scenario, whenever a given machine m; executes any task ¢; faster
than other machine my, then machine m; executes all tasks faster than machine my. In an inconsistent
scenario a given machine m; may be faster than machine m;, when executing some tasks and slower for others.
Finally, a semi-consistent scenario models those inconsistent systems that include a consistent subsystem.

For the purpose of studying the efficiency of the GPU implementations as the problem instances grow,
the experimental analysis consider a test suite of large-dimension HCSP instances, randomly generated
to test the scalability of the proposed methods. This test suite was designed following the methodology
by Ali et al. [17]. The set includes the 96 medium-sized HCSP instances with dimension (tasksxmachines)
102432, 204864, 4096 x 128 and 8192x 256 previously solved using an evolutionary algorithm [18], and new
large dimension HCSP instances with dimensions 16384x512, 32768 x 1024, 65536x2048, and 131072x4096,
specifically created to evaluate the GPU implementations presented in this work.

These dimensions are significanlty larger than those of the popular benchmark by Braun et al. [16] and
they better model present distributed HC and grid systems. The problem instances and the generator
program are publicly available to download at http://www.fing.edu.uy/inco/grupos/cecal/hpc/HCSP.

5.2 Development and execution platform

The parallel MinMin heuristics were implemented in C, using the standard std1lib library. The experimental
analysis was performed on a Dell PowerEdge (QuadCore Xeon E5530 at 2.4 GHz, 48 GB RAM, 8 MB cache),
with CentOS Linux 5.4 and four NVidia Tesla C1060 GPU (240 cores at 1.33 GHz, 4GB RAM) from the
Cluster FING infrastructure, Facultad de Ingenierfa, Universidad de la Republica, Uruguay (cluster website
http://www.fing.edu.uy/cluster).

5.3 Experimental results

This section reports the results obtained when applying the parallel GPU implementations of the MinMin
list scheduling heuristic for the HSCP instances tackled in this article.

In the experimental evaluation, we study two specific aspects of the proposed parallel MinMin imple-
mentations on GPU:

e Solution quality: The proposed parallel implementations modify the algorithmic behavior of the Min-
Min heuristic, so the makespan results obtained with the GPU implementations are not the same
than those obtained with the sequential versions for the studied HCSP instances. We evaluate the
relative gap with respect to the traditional (sequential) MinMin for each method, as defined by Eq. 2,
where makespanpar and makespanspg are the makespan values computed using the parallel and the
sequential MinMin implementation, respectively.

makespanpar — makespansgq

GAP = 2)

makespansgg

e Ezxecution times and speedup: We analyze the wall-clock execution times and the speedup for each
parallel MinMin implementation with respect to the sequential one. The speedup metric evaluates
how much faster a parallel algorithm is than its corresponding sequential version. It is computed as
the ratio of the execution times of the sequential algorithm (7s) and the parallel version executed on
m computing elements (7,,) (Equation 3). The ideal case for a parallel algorithm is to achieve linear
speedup (S,, = m), but the most common situation is to achieve sublinear speedup (S, < m), mainly
due to the times required to communicate and synchronize the parallel processes. However, when using
GPU infrastructures very large speedup values have been often reported.

CLEI ELECTRONIC JOURNAL, VOLUME 15, NUMBER 3, PAPER 8, DECEMBER 2012

_TIs

Sm T

3)
Table 1 reports the average execution times (in seconds), the average GAP values and the average speedup
for each of the four parallel MinMin implementations on GPU studied, and a comparison with the sequential
implementation in CPU. The results in Table 1 correspond to the average values for all the HCSP instances
solved for each problem dimension studied, and the comparison is performed considering the optimized
sequential algorithms using the specialized data representation described in Section 4.

. . MinMin MinMin-1GPU MinMin-4GPU-PT
dimension
t(s) t(s) GAP speedup t(s) GAP speedup
1024 x 32 0.07 0.23 0.10% 0.31 0.88 20.00% 0.08
2048x 64 0.39 0.37 -0.16% 1.06 0.95 28.33% 0.41
4096 x 128 2.25 1.02 0.13% 2.20 1.19 20.66% 1.89
8192x256 15.67 477 0.04% 3.28 2.03 19.90% 7.73

16384 <512 119.74 24.83 -0.46% 4.82 6.08 20.45% 19.69
32768x1023 848.62 | 176.85 -0.11% 4.80 22.77 16.33% 37.28
65536 %2048 6352.94 | 1049.34 0.11% 6.05| 110.44 20.14% 57.52
131072x4096 | 49764.76 | 7253.88 0.04% 6.86 | 690.67 17.64% 72.03
MinMin | MinMin-4GPU-OMP MinMin-4GPU-sync

dimension t(s) t(s) GAP speedup t(s) GAP speedup
1024 %32 0.07 0.83 20.00% 0.09 1.03 -0.07% 0.07
204864 0.39 0.89 28.33% 0.44 1.26 0.07% 0.31
4096 x 128 2.25 1.01 20.66% 2.21 1.95 -0.17% 1.15
8192x256 15.67 1.82 19.90% 8.62 416 0.05% 3.77

16384x512 119.74 5.84 20.45% 20.51 14.83 -0.28% 8.07
32768x1023 848.62 22.79 16.33% 37.23 60.16 -0.16% 14.11
65536 %2048 6352.94 | 108.93 20.14% 58.32 | 292.75 -0.16% 21.70
131072x4096 | 49764.76 | 690.85 17.64% 72.05|2236.72 0.40% 22.25

Table 1: Experimental results for the GPU implementations.

The results in Table 1 show that significant improvements on the execution times of MinMin are obtained
when using the GPU implementations for problem instances with more than 8.000 tasks. When solving the
low-dimension problem instances, the GPU implementations were unable to outperform the execution times
of the sequential MinMin, mainly due to the overhead introduced by the threads creation and management,
and the CPU-GPU memory movements. However, when solving larger problem instances that model realistic
large grid scenarios, significant improvements in the execution times are achieved, specially for the problem
instances with dimension 65536 x2048 and 131072 x4096.

Regarding the computational efficiency, Fig. 5 summarizes the speedup values for the GPU implementa-
tions for each problem dimension faced.

The evolution of the speedup values in Fig. 5 indicates that the four GPU implementations obtained
small accelerations for the HCSP instances with dimension less than 8192x256. However, as the dimension of
the problem instances grow (16384x512, 32768 x1024, 655362048, and 131072x4096), reasonable speedup
values are obtained for the parallel implementations. The best speedup values were computed for the two
largest problem dimensions, with a maximum of 72.05 for the parallel asynchronous MinMin implementation
on four GPUs using OpenMP threads.

The four studied MinMin variants in GPU provide different trade-off values between the quality of so-
lutions and execution time required. The asynchronous implementations applying domain decomposition
using four GPUs (MinMin-4GPU-PT and MinMin-4GPU-OMP) have the largest speedup values, but the
results quality are from 16% to 20% worst than the sequential MinMin implementation. Despite the afore-
mentioned reductions in the solution quality, these methods are able to compute the solutions in reduced
execution times (i.e. about 10 minutes in the larges scenario studied, when scheduling 131072 tasks on
4096 machines), thus they can be useful to rapidly solve large scheduling scenarios. On the other hand,
the parallel synchronous version of MinMin using four GPUs computed exactly the same solution than the

CLEI ELECTRONIC JOURNAL, VOLUME 15, NUMBER 3, PAPER 8, DECEMBER 2012

80 -
—o—MinMin-1GPU
70 4 LY
--2--MinMin-4GPU-PT
60 -
¥
MinMin-4GPU-OMP &
50 - o
o N /
3 == MinMin-4GPU-sync /
3 ,
@ 40
@
g X
"
30 -
20 A
10 -
0 L[k _—_— T T T T "
1024x32 2048x64 4096x128 8192x256 16384x512 32768x1024 65536x2048 131072x4096

dimension

Figure 5: Speedup for the MinMin GPU implementations.

sequential MinMin, but it improves the execution time in a factor of up to 22.25x for the largest instances
tackled in this work.

The previously commented results indicate that the proposed parallel implementation of the MinMin
list scheduling heuristic in GPU are accurate and efficient methods for scheduling in large HC and grid
infrastructures. All parallel variants provides promising reductions in the execution times when solving large
instances of the scheduling problem.

6 Conclusions and future work

This article studied the development of parallel implementations in GPU for a weel-known effective list
scheduling heuristic algorithm, namely MinMin, for scheduling in heterogeneous computing environments.

The four proposed algorithms were developed using CUDA, following a simple domain decomposition
approach that allows scaling up to solve very large dimension problem instances. The experimental evaluation
solved HCSP instances with up to 131072 tasks and 4096 machines, a dimension far more larger than the
previously tackled in the related literature.

The experimental results demonstrated that the parallel implementations of MinMin on GPU provide
significant accelerations over the time required by the sequential implementations when solving large in-
stances of the HCSP. On the one hand, the speedup values raised up to a maximum of 72.05 for the parallel
asynchronous MinMin implementation on four GPUs using OpenMP threads. On the other hand, the paral-
lel synchronous version of MinMin using four GPUs computed exactly the same solution than the sequential
MinMin, but improving the execution time in a factor of up to 22.25x for the largest instances tackled in
this work.

The previously commented results demonstrate that the parallel MinMin implementations in GPU in-
troduced in this article are accurate and efficient schedulers for HC systems, which allow tackling large
scheduling scenarios in reasonable execution times.

The main line for future work is related with improving the proposed GPU implementations, mainly
by studying the management of the memory accessed by the threads. In this way, the computational
efficiency of the heuristics on GPU can be further improved, allowing to develop even more efficient parallel
implementations. Another line for future works is used this implementations for complement the efficient
heuristic local search methods implemented on GPU. We are working on these topics right now.

10

CLEI ELECTRONIC JOURNAL, VOLUME 15, NUMBER 3, PAPER 8, DECEMBER 2012

References

[1]

2]

[17]

[18]

I. Foster and C. Kesselman, The Grid: Blueprint for a Future Computing Infrastructure. Morgan
Kaufmann Publishers, 1998.

T. Velte, A. Velte, and R. Elsenpeter, Cloud Computing, A Practical Approach. New York, NY, USA:
McGraw-Hill, Inc., 2010.

H. El-Rewini, T. Lewis, and H. Ali, Task scheduling in parallel and distributed systems. Prentice-Hall,
Inc., 1994.

J. Leung, L. Kelly, and J. Anderson, Handbook of Scheduling: Algorithms, Models, and Performance
Analysis. CRC Press, Inc., 2004.

M. Eshaghian, Heterogeneous Computing. Artech House, 1996.

R. Freund, V. Sunderam, A. Gottlieb, K. Hwang, and S. Sahni, “Special issue on heterogeneous pro-
cessing,” J. Parallel Distrib. Comput., vol. 21, no. 3, 1994.

M. Garey and D. Johnson, Computers and intractability. Freeman, 1979.

D. Kirk and W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach. Morgan
Kaufmann, 2010.

J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips, “GPU computing,” Proceedings
of the IEEE, vol. 96, no. 5, pp. 879-899, May 2008.

Y. Kwok and I. Ahmad, “Static scheduling algorithms for allocating directed task graphs to multipro-
cessors,” ACM Comput. Surv., vol. 31, no. 4, pp. 406-471, 1999.

F. Berman, G. Fox, and A. Hey, Grid Computing: Making the Global Infrastructure a Reality. New
York, NY, USA: John Wiley & Sons, Inc., 2003.

O. Ibarra and C. Kim, “Heuristic algorithms for scheduling independent tasks on nonidentical proces-
sors,” Journal of the ACM, vol. 24, no. 2, pp. 280289, 1977.

R. Fernando, Ed., GPU gems. Boston: Addision-Wesley, 2004.

nVidia, “CUDA website,” Available online http://www.nvidia.com/object/cuda_home.html, 2010, ac-
cessed on July 2011.

M. Theys, T. Braun, H. Siegel, A. Maciejewski, and Y. Kwok, “Mapping tasks onto distributed hetero-
geneous computing systems using a genetic algorithm approach,” in Solutions to parallel and distributed
computing problems. New York, USA: Wiley, 2001, pp. 135-178.

T. Braun, H. Siegel, N. Beck, L. B616ni, M. Maheswaran, A. Reuther, J. Robertson, M. Theys, B. Yao,
D. Hensgen, and R. Freund, “A comparison of eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems,” J. Parallel Distrib. Comput., vol. 61, no. 6,
pp. 810-837, 2001.

S. Ali, H. Siegel, M. Maheswaran, S. Ali, and D. Hensgen, “Task execution time modeling for heteroge-
neous computing systems,” in Proc. of the 9th Heterogeneous Computing Workshop, Washington, USA,
2000, p. 185.

S. Nesmachnow, “A cellular multiobjective evolutionary algorithm for efficient heterogeneous computing
scheduling,” in EVOLVE 2011, A bridge between Probability, Set Oriented Numerics and Evolutionary
Computation, 2011.

11

