
CLEI ELECTRONIC JOURNAL, VOLUME 15, NUMBER 2, PAPER 7, AUGUST 2012

1

Querying data warehouses efficiently using

the Bitmap Join Index OLAP Tool

Anderson Chaves Carniel

São Paulo Federal Institute of Education, Science and Technology, IFSP, Salto Campus,

Salto, SP, Brazil, 13.320-271

accarniel@gmail.com

and

Thiago Luís Lopes Siqueira

São Paulo Federal Institute of Education, Science and Technology, IFSP, São Carlos Campus,

São Carlos, SP, Brazil, 13.565-905

Federal University of São Carlos, UFSCar, Computer Science Department,

São Carlos, SP, Brazil, 13.565-905

prof.thiago@ifsp.edu.br

Abstract

Data warehouse and OLAP are core aspects of business intelligence environments, since the

former store integrated and time-variant data, while the latter enables multidimensional

queries, visualization and analysis. The bitmap join index has been recognized as an efficient

mechanism to speed up queries over data warehouses. However, existing OLAP tools does

not use strictly this index to improve the performance of query processing. In this paper, we

introduce the BJIn OLAP Tool to efficiently perform OLAP queries over data warehouses,

such as roll-up, drill-down, slice-and-dice and pivoting, by employing the bitmap join index.

The BJIn OLAP Tool was implemented and tested through a performance evaluation to assess

its efficiency and to corroborate the feasibility of adopting the bitmap join index to execute

OLAP queries. The performance results reported that our BJIn OLAP Tool provided a

performance gain that ranged from 31% up to 97% if compared to existing solutions

regarding the query processing. Our tool has proven not only to efficiently process queries,

but also to process OLAP operations on the server and client sides, for different volumes of

data and taking into account different operating systems. Besides, it provides a reasonable use

of the main memory and enables new rows to be appended to bitmap join indices.

 Keywords: bitmap join index, OLAP, drill-down, roll-up, slice-and-dice, pivoting

 1 Introduction

Business Intelligence solutions (BI) are widely adopted by management sectors of enterprises to aid processing,

analysis and interpretation of their data, aiming at positively impacting strategy, tactics, and operations [1]. Data

warehouse (DW) and Online Analytical Processing (OLAP) are core aspects of BI environments [2]. The DW is a

subject-oriented, integrated, time-variant and non-volatile dimensional database [3], while OLAP provides tools to

perform multidimensional queries over the DW and to support visualization and analysis of the DW [4]. Combining

both the DW and OLAP enables a better monitoring of business. Therefore, many OLAP tools have been developed

to end users visualize and manipulate multidimensional data, such as Oracle BI [5] and Mondrian [6].

The multidimensional operations commonly supported by OLAP tools are drill-down, roll-up, slice-and-dice and

pivoting [1][7]. They force the OLAP tool to challenge performance issues, since costly joins among huge fact and

dimension tables as well as grouping operations are required together with predicates that filter the results. Aiming

at reducing the query response time in DW, well-known methods as vertical fragmentation [8], view materialization

[9][10][11][12] and indices [13][14] were proposed. However, none of the studied OLAP tools has investigated the

feasibility of adopting exclusively the bitmap join index [13][15] to improve the query processing performance in

DW, although this index avoids costly join operations.

Providing such investigation is one of the contributions of this paper. In addition we introduce the Bitmap Join

Index OLAP Tool (BJIn OLAP Tool) to efficiently perform drill-down, roll-up, slice-and-dice and pivoting OLAP

operations, as our main contribution. Our tool has proven to efficiently process these operations both on the server

and client sides, for different volumes of data and also with portability for different operating systems. In addition, it

provides a reasonable use of the main memory and enables new rows to be appended to bitmap join indices.

This paper extends a previous work [16], which was published and presented in CLEI’2011 - XXXVII

Conferencia Latinoamericana de Informatica, in Quito, Ecuador. Furthermore, this paper extends another previous

work [17]. We highlight several unpublished subjects addressed in this paper, as follows. We present an extended

description of the BJIn OLAP Tool that comprises the system architecture, all the available operations (building,

querying, appending new rows to and dropping bitmap join indices) and some implementation details. Moreover, the

experimental evaluation discusses novel performance tests concerning the interface (client), the append operation

and the portability. The remaining of this paper is organized as follows. Section 2 summarizes the technical

background necessary to comprehend this paper. Section 3 introduces the BJIn OLAP Tool. Section 4 discusses the

experimental results. Section 5 surveys related work. Finally, Section 6 concludes the paper and addresses future

work.

 2 Technical Background

In this section, the technical background necessary to comprehend the paper is summarized. In Section 2.1, data

warehouse and OLAP concepts, applications and examples are addressed. In Section 2.2, methods to provide an

efficient query processing over DW are described. Finally, Section 2.3 details how to append new rows.

 2.1 Data warehouse and OLAP

Fig. 1 shows a star schema representing a retail application, which is derived from the Star Schema Benchmark

(SSB) [18]. Lineorder is the fact table that measures sales and orders, while Customer, Supplier, Part and Date are

dimension tables that redundantly store descriptive attributes that categorize the facts. These dimension tables are

referenced by the fact table through foreign keys. In addition, the dimension tables hold hierarchies that enable data

aggregation according to different granularity levels, such as (c_region) (c_nation) (c_city) (c_address),

which is held by the dimension table Customer, and (p_mfgr) (p_category) (p_brand1) (p_partkey) which is

held by the dimension table Part. Considering the mentioned hierarchy in the dimension table Customer, c_region is

the highest granularity level, while c_address is the lowest granularity level. According to [11], Q1 Q2 if, and only

if it is possible to answer Q1 using just the results of Q2, and Q1 ≠ Q2. Therefore, it is possible to find out the revenue

in a given nation by aggregating the results of the cities inside that nation, for example. Finally, an alternative to the

star schema is the snowflake schema that normalizes the hierarchies. However, the snowflake schema introduces

additional costly join operations among dimension tables in order to process queries [19].

Fig. 1: A star schema for a DW of a retail application [13].

Drill-down and roll-up OLAP operations depend on hierarchies [1]. A drill-down operation decomposes fact data

to lower levels of a hierarchy, then increasing data details. Inversely, a roll-up operation aggregates fact data to

upper levels of a hierarchy, then summarizing data [7]. Fig. 2 shows examples of these operations adapted from

[18], using existing hierarchies held by the dimension tables Customer and Supplier. Considering that the user firstly

issued the query of Fig. 2a and later issued the query of Fig. 2b, there was a drill-down operation based on both

(c_nation) (c_city) and (s_nation) (s_city). On the other hand, if the user had issued the queries inversely, there

was a roll-up operation based also on those mentioned hierarchies. The underlined attributes in Fig. 2 highlight these

operations.

Both the queries of Fig. 2a and Fig. 2b exemplify the slice-and-dice operation, which consists of applying filters

to the resulting data [7], such as “c_region = 'ASIA' AND s_region = 'ASIA' AND d_year >= 1992 AND d_year <=

1997”, shown in Fig. 2a. Finally, the pivoting operation enables reordering results by switching the axis for columns

and rows [7]. Fig. 3a shows the results for the query of Fig. 2a, whose column d_year was pivoted to be a row,

providing the results of Fig. 3b. The representation of results in Fig. 3b is also known as a cross table [6].

OLAP tools support OLAP operations that are executed over the DW, such as drill-down, roll-up, slice-and-dice

and pivoting and enable multidimensional visualization and analysis [1]. Mostly, the data cube is accessed through

Multidimensional Expressions (MDX) [20]. For instance, Mondrian is an open source OLAP server that comprises

these features and reports query results on Java Server Pages by rendering the cross table employing JPivot [6] and

synchronous requests that are sent to the server [21]. In order to enable OLAP operations, Mondrian requires the

data cube definition in XML format describing the DW schema, e.g. fact and dimension tables, hierarchies and

measures. The user may execute the Mondrian Schema Workbench and provide the proper inputs to generate the

XML document containing the description of the DW. Otherwise, the user may execute any XML editor. This file

ensures the correct access to tables, attributes and hierarchies when executing queries on Mondrian. Regarding

query execution, the user types the query using MDX accessing the Mondrian interface. The MDX code is translated

by Mondrian to SQL to access the database management system (DBMS), execute the query and finally retrieve the

answers. The result set is then rendered in cross tables and charts and presented to the user, and then drill-down,

roll-up, slice-and-dice and pivoting operations are enabled. Conversely, recent web applications are adopting

asynchronous requests based on Ajax and JSON (JavaScript Object Notation) [26]. Therefore we decided to adopt

asynchronous requests to develop the BJIn OLAP Tool.

DRILL-DOWN

SELECT c_nation, s_nation, d_year,
 sum(lo_revenue) AS revenue
FROM customer, lineorder, supplier, date
WHERE lo_custkey = c_custkey
 AND lo_suppkey = s_suppkey
 AND lo_orderdate = d_datekey
 AND c_region = 'ASIA' AND s_region = 'ASIA'
 AND d_year >= 1992 AND d_year <= 1997
GROUP BY c_nation, s_nation, d_year
ORDER BY d_year ASC, revenue DESC;

SELECT c_city, s_city, d_year,
 sum(lo_revenue) AS revenue
FROM customer, lineorder, supplier, date
WHERE lo_custkey = c_custkey
 AND lo_suppkey = s_suppkey
 AND lo_orderdate = d_datekey
 AND c_nation = 'JAPAN' AND s_nation = 'JAPAN'
 AND d_year >= 1992 AND d_year <= 1997
GROUP BY c_city, s_city, d_year
ORDER BY d_year ASC, revenue DESC;

ROLL-UP

(a) querying the nation granularity (b) querying the city granularity

Fig. 2: Roll-up and drill-down operations

c_nation s_nation d_year revenue c_nation s_nation revenue

CHINA CHINA 1992 5587028770

1992

CHINA CHINA 5587028770

CHINA CHINA 1993 5241310984 CHINA INDIA 4912422786

CHINA CHINA 1994 5452596836 CHINA INDONESIA 5259493502

CHINA CHINA 1995 5335157374 CHINA JAPAN 5040640767

CHINA CHINA 1996 5436388668 CHINA VIETNAM 4437447402

CHINA CHINA 1997 5281192823 INDIA CHINA 4698961607

CHINA INDIA 1992 4912422786 INDIA INDIA 4156866160

… … … … … … … …

(a) query results (b) cross table with column d_year pivoted

Fig. 3: The original query results and the pivoted query results reorganized with year as a row

 2.2 Improving query processing performance over data warehouses

The costly method to process a query over a DW is to perform the star-join, by joining all tables of the star schema

and then perform filters, groupings and sorting. This strategy provides prohibitive query response times, as

discussed in Section 4. On the other hand, the methods discussed in this section can improve the query processing

performance over DW, and are employed in the performance evaluation presented in Section 4.

Some methods store pre-computed data into tables after performing some operations. A vertically fragmented

view [8] maintains the minimum set of columns of the star schema that are necessary to answer a given query. For

instance, the table shown in Fig. 4a has the minimum set of columns to provide the answer to the query shown in

Fig. 2a. Note that all essential joins were computed when composing the view, by issuing Π c_region, s_region, c_nation,

s_nation, d_year, lo_revenue (Customer Lineorder Supplier Date). Therefore, this view can be stored aiming at

improving the query processing performance, since joins are avoided and only filters and groupings need to be

computed to retrieve the query answer.

On the other hand, materialized views [9][11][12] pre-compute the DW information that can be used to answer

queries that are frequently issued. A materialized view is built by creating a table to report pre-computed data from a

fact table that was joined to dimension tables, and whose measures were aggregated. Since a materialized view

stores pre-computed aggregated data, processing a query avoids joins and groupings, and drastically reduces the

number of rows then benefiting the filters. For instance Fig. 5a depicts a materialized view created as c_nation, s_nation,

d_year GSUM(lo_revenue) (Π c_region, s_region, c_nation, s_nation, d_year, lo_revenue (Customer Lineorder Supplier Date)) to

efficiently answer the query shown in Fig. 2a. This view can be stored aiming at improving the query processing

performance, since joins and groupings are avoided, and only filters need to be computed to retrieve the query

answer. The reduced set of rows benefits the performance of filtering. Finally, both vertically fragmented views and

materialized views can be applied to OLAP tools to enhance the query processing performance over DW. For

example, materialized views can be applied to Mondrian, i.e., aggregate tables according to Mondrian’s

terminology.

(a) a vertically fragmented view (b) the corresponding bitmap join indices

Fig. 4: Vertically fragmented view and Bitmap join indices

(a) a materialized view (b) the corresponding bitmap join indices

Fig. 5: Materialized view and Bitmap join indices

Indices are an alternative to storing pre-computed data. The bitmap index [14] builds one bit-vector to each

distinct value v of the indexed attribute A. The attribute cardinality, |A|, is the number of distinct values of A and

determines the quantity of existing bit-vectors. All bit-vectors have as many bits as the number of rows found in the

indexed table. If for the i-th record of the table we have that A = v, then the i-th bit of the bit-vector built for value v

is set to 1. Otherwise, the bit is set to 0. Suppose that the attribute d_year Fig. 3a is indexed by a bitmap index. The

cardinality |d_year| is 6, resulting in six bit-vectors, each one of them associated to one of the values 1992, 1993,

1994, 1995, 1996 and 1997. For instance, the bit-vector for d_year=1992 is 1000001, denoting the existence of

d_year=1992 in the first and seventh rows. The main advantage of processing queries using a bitmap index is the

CPU efficiency of bitwise operations (i.e. AND, OR, XOR, NOT) [22]. For instance, to query “d_year>=1992 AND

d_year<=1995”, there are bit-wise OR operations among the bit-vectors for the values involved, i.e., 1000001 OR

0100000 OR 0010000 OR 0001000. The result, 1111001, excludes the fifth and sixth rows from the result set. High

cardinality attributes may impair the performance of the bitmap index, but binning, encoding and compression

techniques minimize these losses [14]. Currently, the FastBit is an efficient open source implementation of the

bitmap index [23].

Besides, a bitmap join index [13] can be created on the attribute B of a dimension table in order to indicate the set

of rows in the fact table to be joined with a certain value of B. Therefore, each bit determines the rows of the fact

table where a given value of B exists. As already mentioned, Fig. 4a shows the table obtained from applying

Π c_region, s_region, c_nation, s_nation, d_year, lo_revenue (Customer Lineorder Supplier Date) on the star schema shown in

Fig. 1 to answer the query of Fig. 2a. This table is the fact table Lineorder joined with the dimensions Customer,

Supplier and Date. In Fig. 4b, bitmap join indices were built on attributes c_region, s_region, c_nation, s_nation

and d_year to improve the performance when processing the query shown in Fig. 2a. As a result, these indices

indicate the rows of the table shown in Fig. 4a where a given value occurs. For instance, d_year = 1998 occurs in the

8
th

 and 9
th

 rows of the table shown in Fig. 4a. Joins among huge DW tables are necessary only once to build the

bitmap join index. After the index is built, the queries can be processed by accessing the index, avoiding costly joins

among the tables of the DW. Bitmap join indices built over materialized views, as shown in Fig. 5b, are capable of

processing queries even more efficiently than those built over vertically fragmented views, because the former

maintain aggregated data (and a reduced data volume) while the latter does not. Although the bitmap join index

improves the query processing over DW, none of the OLAP tools investigated in Section 5 adopted exclusively this

index to process OLAP queries such as drill-down, roll-up, slice-and-dice and pivoting.

 2.3 Appending rows to data warehouses, views and indices

In this section, issues related to appending rows to vertically fragmented views, materialized views and bitmap join

indices are discussed [7][19][24][25], since they are essential to understand the append operation developed for the

BJIn OLAP Tool. New rows are appended to DW on a regular time cycle, e.g. daily, weekly or monthly. Suppose

that the three rows shown in Fig. 6 are appended to the DW depicted in Fig. 1. Consider, also, that lo_suppkey=715

references a supplier located in Brazil (t1), lo_custkey=22851 references a customer located in Japan (t1), and

lo_orderdate=871 occurred in 1993 (t1 and t3).

t1

lo_orderkey lo_linenumber lo_partkey lo_custkey lo_orderdate lo_suppkey lo_revenue … lo_shipmode

78171831 15 1 22851 871 715 7890 AIR

t2

c_custkey c_name c_phone c_mktsegment c_address c_city c_nation c_region

30001 EC7000 +59388112278 AUTOMOBILE EC18930 QUITO ECUADOR AMERICA

t3

lo_orderkey lo_linenumber lo_partkey lo_custkey lo_orderdate lo_suppkey lo_revenue … lo_shipmode

78171831 16 1 30001 871 715 92910 RAIL

Fig. 6: Three rows to be appended to the DW depicted in Fig. 1

Firstly, the row t1 is inserted in the fact table Lineorder. Considering the vertically fragmented view of Fig. 4a, a

new row is appended, as {'ASIA', 'AMERICA', 'JAPAN', 'BRAZIL', 1993, 7890}. In Fig. 4b, the bit-vector for

c_region='AMERICA' has a bit 0 appended, while the bit-vector for c_region='ASIA' has a bit 1 appended, and the

other attributes’ bit-vectors are similarly modified. As for the materialized view of Fig. 5a, the second row should be

modified to comprise the value 586026 (i.e. 578136+7890) for the attribute sum(lo_revenue). Finally, no one of the

bit-vectors in Fig. 5b need to be modified, since any new row was inserted in the corresponding materialized view of

Fig. 5a. However, if the attribute sum(lo_revenue) was indexed, the bit-vector for value 578136 would be modified

by replacing a bit 1 by a bit 0 in the second row, i.e. the bit-vector would be modified from 010000000 to

000000000. In addition, a bit-vector for value 586026 (i.e. 578136+7890) would be created and have a bit 1 in the

second row and zeroes in the remaining rows, i.e. 010000000. Clearly, the insertion of t1 in the DW reveals several

challenges for maintaining vertically fragmented views, bitmap join indices or materialized views, which are

necessary to speed up the query processing.

Secondly, the row t2 is inserted in the dimension table Customer and does not affect the vertically fragmented

view, the bitmap join indices or the materialized views since these are exclusively associated to facts. And thirdly, t3

is inserted in the fact table Lineorder. As a result, the vertically fragmented view of Fig. 4a has a new row appended,

as {'AMERICA', 'AMERICA', 'ECUADOR', 'BRAZIL', 1993, 92910}. As for the bitmap join indices shown in Fig.

4b, it is necessary to: (i) append a bit 1 in the bit-vector for c_region='AMERICA' and append a bit 0 in the bit-

vector for c_region='ASIA'; (ii) append a bit 1 in the bit-vector for s_region='AMERICA' and append a bit 0 in the

bit-vector for s_region='ASIA'; (iii) build a new bit-vector for c_nation='ECUADOR', with a bit 1 in the last row

and bits zeroes in the remaining rows; (iv) append a bit 1 in the bit-vector for s_nation='BRAZIL' and append a bit 0

in the remaining bit-vectors of this attribute; and (v) append a bit 1 in the bit-vector for d_year=1993 and append a

bit 0 in the remaining bit-vectors of this attribute. As for the materialized view shown in Fig. 5a, a new row

composed of {'AMERICA', 'AMERICA', 'ECUADOR', 'BRAZIL', 1993, 92910} is appended. If the attribute

sum(lo_revenue) was indexed, a new bit-vector for value 92910 would be built with a bit 1 in the last row and zeroes

in the remaining rows. Finally, the bitmap join index on c_nation in Fig. 5b earns a new bit-vector for value

'ECUADOR', while the other bit-vectors are modified similarly to those from Fig. 4b, as discussed. Clearly, the

insertion of t2 and t3 in the DW reveals even more challenges for maintaining vertically fragmented views, bitmap

join indices or materialized views aiming at speeding up the query processing. Particularly, the bitmap join indices

required the creation of more bit-vectors, since a new customer was inserted in the Customer dimension table. The

BJIn OLAP Tool supports appending new rows to the DW similarly to the insertion of t1, t2 and t3, as detailed in

Section 3.3.

 3 The Bitmap Join Index OLAP Tool

The architecture of the Bitmap Join Index OLAP Tool (BJIn OLAP Tool) is shown in Fig. 7. The BJIn OLAP Tool

was developed as an open source OLAP server written in Java that accesses bitmap join indices to speed up the

OLAP operations drill-down, roll-up, slice-and-dice and pivoting. On the server side, our tool operates both the

DBMS and the FastBit in order to build the indices, to issue queries over them and to append new rows to them. The

queries are submitted by the client to the server, and the latter accesses strictly the indices to provide the answer

rapidly with high performance. On the client side, the user interacts with our tool through Java Server Pages,

submits queries and analyzes multidimensional data that are rendered on cross tables and charts produced by the

Open Ajax Toolkit Framework. Whenever a cross table is modified by the user to produce another view, the

corresponding chart is refreshed and synchronized with the cross table, and vice-versa. Some implemented facilities

aid users to interact, i.e. the visualization of the data cube as a tree to select attributes to index and highlight and auto

complete the query string to match the proper syntax. Finally, other utilities manipulate internal files to maintain

logs, access privileges, configuration parameters, metadata and parsing.

Fig. 7: The architecture of the BJIn OLAP Tool

Sections 3.1, 3.2, 3.3 and 3.4 describe building, query processing, data appending and drop operations over

bitmap join indices using the BJIn OLAP Tool, respectively. Section 3.5 details additional features. We encourage

the reader to access the BJIn OLAP Tool Portal at http://gbd.dc.ufscar.br/bjinolap.

 3.1 Building the bitmap join indices

Before using the BJIn OLAP Tool to build bitmap join indices, the user should execute the Mondrian Schema

Workbench to specify the attributes to be indexed, as well as dimension and fact tables, measures, and hierarchies

that exist in the DW schema. The Workbench validates these inputs by checking the DW schema, i.e., by accessing

the DBMS, assuring that the DW was properly described by the user. If the validation is successful, the Workbench

generates a XML document that stores all the DW schema specification and the attributes to be indexed. The reuse

of Mondrian Schema Workbench promotes the interoperability between Mondrian OLAP Server and the BJIn

OLAP Tool, since the produced XML document can be used by both. While Mondrian reads the document to

compose a data cube, our tool parses it in order to build the bitmap join indices on the specified attributes. However,

the use of the Mondrian Schema Workbench does not impose a restriction, because another XML editor could be

employed instead, since the syntax and tags remains the same.

After specifying all parameters, the user logs in the BJIn OLAP Tool, uploads the corresponding XML document

and sets or unsets the append flag, which determines if the indices shall support new rows to be appended or not (as

detailed in Section 3.3). Thereafter, the UML activity diagram shown in Fig. 8 models the whole process of how to

build bitmap join indices using our tool. Once uploaded, the XML document is parsed by the BJIn OLAP Tool,

which issues SQL and dump commands on the DBMS in order to compute joins and build a temporary table. This

table is dumped to a set of CSV files (comma-separated values) that are stored into the BJIn OLAP directory. Then,

the BJIn OLAP Tool issues ardea and ibis commands to the FastBit. While the former reads CSV files to store data

into the FastBit binary format, the latter effectively builds the bitmap index and stores it into the directory. Finally,

the BJIn OLAP Tool records metadata that fully specifies the index, e.g. the names and types of the indexed

columns, aliases and the available OLAP operations for that index. The log recording starts after the composition of

SQL and dump commands and finishes after metadata are recorded. The log file is detailed in Section 3.5 and

maintains a complete description of the building operation.

Fig. 8: Building bitmap join indices using the BJIn OLAP Tool

For instance, suppose that c_region, s_region, c_nation, s_nation, d_year and lo_revenue from the DW depicted

in Fig. 1 were specified by the user to be indexed. They involve four different tables to be joined: Customer,

Lineorder, Date and Supplier. Therefore, the temporary table to be created by the SQL commands is exactly the one

shown in Fig. 4a. Then, the bitmap join indices are created on the attributes of this temporary table. Note that

indexing such attributes would enable roll-up or drill-down operations considering that (c_region) (c_nation).

However, in order to enable roll-up or drill-down operations along the entire hierarchies (c_region) (c_nation)

(c_city) (c_address) and (s_region) (s_nation) (s_city) (s_address), the user may have firstly specified

each one of these attributes on Mondrian Schema Workbench.

http://gbd.dc.ufscar.br/bjinolap

A relevant remark is that the user can alternatively create bitmap join indices over materialized views, similarly

to Fig. 5. Considering the activity diagram shown in Fig. 8, in addition to upload the XML document and set or

unset the append flag, the user may check the option to build indices over the materialized view and then specify the

attributes to be indexed. To specify these attributes, the user marks them on the BJIn OLAP Tool interface (i.e. the

Tree Cube View component, shown in Fig. 7). Then, the DBMS builds a temporary table that corresponds to the

materialized view containing the specified attributes. The creation of the materialized view causes an overhead

because it requires data aggregation. On the other hand, the index has a reduced data volume and a better

performance on query processing.

The BJIn OLAP Tool provides mechanisms to avoid, treat and report errors during the tasks to build bitmap join

indices. The tool refuses the upload of any invalid XML documents or indices that are homonyms. All attributes

have internal aliases that avoid ambiguity. Also, our tool limits the data volume to be manipulated by the FastBit,

avoiding memory leaks.

 3.2 Query processing

Whenever the user builds an index, its metadata is recorded and then the index becomes available to be queried. The

UML activity diagram shown in Fig. 9 models the whole process of how to process queries using our tool. Initially,

the user chooses the index to be used among all available indices, and types the desired query. The BJIn OLAP Tool

parses the query and writes the proper ibis command containing the query and the chosen index, and submits it to

the FastBit. Then, the FastBit accesses the index and processes the query. After processing the query, the FastBit

writes a CSV file containing the query results. The BJIn OLAP Tool reads this CSV file to build the cross table and

render it on Java Server Pages, which are displayed to the user. Additionally, charts are displayed to depict the same

results of the cross table.

Fig. 9: Issuing queries to be processed by the BJIn OLAP Tool

After a query execution, rather than typing another query the user is able to perform OLAP operations as follows.

Once the results were displayed, the pivoting operation is allowed. All the user needs to do is to drag and drop

columns or rows to switch the axis of the cross table. This operation is computed on the client side, and therefore

was not shown in Fig. 9. Drill-down and roll-up operations are also allowed for the user if the requested attributes

were indexed and if there is at least one hierarchy involved in the previous query. For instance, if the previous query

involves the s_nation attribute, a combo-box will enable the attribute s_region for the roll-up operation, and the

attributes s_city and s_address for the drill-down operation. The user then selects the operation and the attributes of

interest in the combo-box. Furthermore, roll-up and drill-down operations are executed on the server side, and

correspond to issuing a new query. However, since results of the previous query were cached by the server and

contain partial results of the new query, the performance is benefited. Every OLAP operation that the user applies to

a cross table is also applied to synchronize the corresponding chart.

The query language used to compose queries is already defined by the FastBit and does not require joins or

grouping clauses. The columns listed in the SELECT clause are used to aggregate results. Therefore, writing the

query is a straightforward task for the user, since only SELECT-WHERE clauses need to be written. Furthermore,

the slice-and-dice operation can be described as restrictions in the WHERE clause.

For instance, suppose that attributes c_region, s_region, c_nation, d_year and lo_revenue were indexed and that

the user issues the query “SELECT c_nation, s_nation, d_year, sum(lo_revenue) WHERE AND c_region = 'ASIA'

AND s_region = 'ASIA' AND d_year >= 1992 AND d_year <= 1997”. The FROM clause is not necessary because

the user had already selected the index to be queried. The WHERE clause has filters that define the slice-and-dice

OLAP operation. To submit a roll-up operation on c_nation, instead of typing another query, the user should simply

select the attribute s_nation in the combo-box. To perform a pivoting operation and switch the column d_year to a

row, the user should simply drag and drop this item. The results of these operations are automatically applied to the

chart that depicts the corresponding cross table.

The BJIn OLAP Tool provides mechanisms to avoid, treat and report errors during the tasks to process queries

over bitmap join indices. Since the building and the data appending operations of bitmap join indices often spend

several seconds (as discussed in Section 4), our tool does not enable queries over indices that are currently being

built or having new rows appended. Besides, the tool refuses to issue queries that are syntactically wrong or that

refer to attributes that are not indexed by the selected index. Ambiguity is avoided to issue and process queries,

since all attributes have internal aliases. Moreover, any runtime error during the query execution is reported to the

user. The log recording starts after parsing the query and finishes after displaying cross tables and charts. Finally,

the OLAP operations of drill-down, roll-up, slice-and-dice and pivoting are enabled only for attributes that were

previously indexed and whose hierarchies were associated to the previous query.

 3.3 Appending new rows to bitmap join indices

In the BJIn OLAP Tool, the existing bitmap join indices support new rows to be appended if the user had set the

append flag before building the indices (see Section 3.1 and Fig. 8). The UML activity diagram shown in Fig. 10

models the whole process of how to append new rows to existing bitmap join indices using the BJIn OLAP Tool.

Firstly, the user provides the name of the index that wishes to append new rows to. Then, our tool reads the metadata

of the specified index and then issues SQL and dump commands on the DBMS. A temporary table whose rows must

be appended to the indices is accessed, and its rows are dumped in CSV files. After dumping data, all the rows of

the temporary table are deleted. Then, the BJIn OLAP Tool composes ardea and ibis commands and issues them on

FastBit using the cited CSV files to append the new rows and possibly create new bit-vectors. Finally, our tool

updates the metadata file with the timestamp of the last row appended. The log recording starts after composing

SQL and dump commands and finishes after recording the metadata.

In detail, whenever the user sets the append flag before building the indices, the BJIn OLAP Tool automatically

creates two main components:

 a temporary table with the same attributes of the indices; and

 a trigger that monitors if new rows are being appended to the fact table of the DW.

The temporary table remains stored as long as the corresponding indices exist (see more details in Section 3.4).

Rows are inserted into this table whenever the trigger detects an insertion into the fact table, similarly to the rows t1

and t3 exemplified in Fig. 6. The trigger maps the foreign key values of each appended row to the corresponding

values of attributes that were indexed. Also, the trigger inserts the mapped appended rows in the temporary table.

This table then contains the set of rows to be appended to the bitmap join indices. The trigger has a sequence of

tasks to be performed, independently of the DW schema. These tasks are detailed in Algorithm 1, whose parameters

and local variables are described in Table 1.

Initially, the record to be inserted in the temporary table is empty (line 1). There is a loop to assure the processing

of the following tasks for every row inserted in the fact table (lines 2 to 19). For each attribute of the inserted row,

the values are mapped to the values that will be appended to the index (lines 3 to 14). Attributes that have foreign

keys referencing the dimension tables (lines 4 to 12) are distinguished from those attributes that denote measures

(line 13). Finally, the record with mapped values is inserted in the temporary table (lines 15 to 18).

To map the values of the attributes that reference the dimension tables through foreign keys (e.g. lo_custkey in

Fig. 1) to adequate values of the indexed attributes (e.g. c_region and c_nation in Fig. 1), each dimension table must

be read (line 4). If one of the dimension tables store the given attribute (e.g. Customer), then it is necessary to

compose the set of indexed attributes C (line 6). This set indicates all attributes in a given dimension table that also

exist in the temporary table. For instance, if Customer is the dimension table and temp has the attributes of Fig. 4a,

then C is assigned to {c_region, s_region, c_nation, s_nation, d_year, lo_revenue} {c_custkey, c_name,

c_phone, c_mktsegment, c_address, c_city, c_nation, c_region} and therefore C = {c_nation, c_region}. Then, for

each element of C, the value for that attribute is fetched in the dimension table and added to the record that

maintains mapped values (lines 7 to 10). For example, if the row t1 of Fig. 6 was inserted in the fact table, the values

'JAPAN' and 'ASIA' would be added to the record, since SELECT c_nation FROM Customer WHERE c_custkey =

22851 and c_region FROM Customer WHERE c_custkey = 22851 would be executed. After executing these steps

for all dimension tables, the record would contain {'ASIA', 'AMERICA', 'JAPAN', 'BRAZIL', 1993}.

Fig. 10: Appending new rows to bitmap join indices with the BJIn OLAP Tool

Algorithm 1

BitmapJoinIndexAppendRowsTrigger (F, T, ti, aj, D, dk, M,temp)

Output: The temporary table containing data to be appended to the bitmap join indices.

Declarations: record, value, C, NEW

01 record ← NULL

02 for each ti in T

03 for each aj in ti

04 for each dk in D

05 if aj dk then

06 C ← temp.getColumns() dk.getColumns()

07 for each cm in C

08 value ← execute_dbms(SELECT cm FROM dk WHERE dk.pk = ti.aj)

09 record.add(value)

10 end-for

11 end-if

12 end-for

13 if aj M then record.add(NEW.aj)

14 end-for

15 if record is not null then

16 execute_dbms(INSERT INTO temp VALUES record.getValues())

17 record ← NULL

18 end-if

19 end-for

Further, the values for the attributes that denote measures are added to the record (line 13). In the previous

example, the value for lo_revenue is added to the record, resulting in {'ASIA', 'AMERICA', 'JAPAN', 'BRAZIL',

1993, 7890}. As a result, the record store the mapped values. Finally, the insertion is performed in the temporary

table using the mapped values from the record (lines 15 to 18), for example INSERT INTO temp VALUES ('ASIA',

'AMERICA', 'JAPAN', 'BRAZIL', 1993, 7890). An important detail is to empty the record before processing another

row (line 17). Note that the BJIn OLAP Tool has a strict control over attributes that are homonyms, avoiding the

ambiguity that could occur if attributes in distinct dimension tables had the same name (in line 5). One important

remark is that Algorithm 1 supports only star schemas. To provide support for a snowflake schema, the BJIn OLAP

Tool modifies line 8 to join the normalized tables and then fetch the attribute cm. These tables are held by the set of

dimension tables D.

Table 1: Parameters and local variables of Algorithm 1

Parameter or local variable Description

F the DW’s fact table

T the set of rows that are being inserted in the fact table F

ti a row from T

aj an attribute from ti

D the set of dimension tables

dk a dimension table from D

M the set of measures in F

temp the temporary table

record a record of type temp

value a value extracted from a given attribute

C a set of attributes

NEW the row that is being appended to F

Regarding the data appending to bitmap join indices using the BJIn OLAP Tool, we finally emphasize that:

 The append operation comprises the creation of new bit-vectors if necessary, similarly to the insertion of

rows t1 and t3 in the fact table Lineorder, according to Fig. 6.

 Insertions in the fact table that are denied by the DBMS because they violate integrity or referential

constraints are not considered by the BJIn OLAP Tool to append rows to the bitmap join indices.

 The replacement of values, similar to an UPDATE command of the SQL, is not supported. As exemplified

in Section 2.2, this is the case for the bitmap join index built on the attribute sum(lo_revenue) of Fig. 5a

and the subsequent insertion of the row t1 into Lineorder, according to Fig. 6.

 If bitmap join indices created over a materialized view requires the replacement of values, firstly the

materialized view and later the bitmap join indices are rebuilt.

 The append operation is not automatic and requires the user intention because, similarly to a DW, this

operation should be executed in batch and during a time window when the indices are unavailable to users.

 3.4 Dropping the bitmap join indices

The UML activity diagram shown in Fig. 11 describes how to drop bitmap join indices using the BJIn OLAP Tool.

Firstly, the user selects the index to be dropped and confirms the choice, because this operation is permanent and

cannot be undone. Then, our tool checks if the user had set the append flag before building the index. If so, the

DBMS is accessed and drops the corresponding temporary table and trigger. The files and directories concerning the

index chosen are removed from the file system. The BJIn OLAP Tool provides mechanisms to avoid, treat and

report errors during the tasks to drop bitmap join indices as follows. Only indices whose append flag were set

require an access to the database. Besides, the metadata that describe the indices (Section 3.1) and the internal

aliases for indices and their attributes avoid the deletion of indices that were not specified by the user.

 3.5 Additional features

The operations involving bitmap join indices described in sections 3.1 to 3.4 require a previous authentication, i.e.,

the BJIn OLAP Tool only enables these operations if the user was previously identified and logged in. The

privileges available to users are: canUploadXml to allow XML files to be uploaded by the user; canCreateIndex to

allow the user to build indices; canAppendRows to allow indices to have new rows appended; canDropIndex to

allow indices to be dropped by a given user; and isSuperUser to determine if the user is a superuser and therefore

has no restrictions.

In order to configure the BJIn OLAP Tool to run properly in a given operating system, the user sets the

parameters in the configuration file config.properties. The properties required are: ibisPath to indicate the directory

where the ibis application was installed by the FastBit; ardeaPath to indicate the directory where the ardea

application was installed by the FastBit; url to detail the Java Database Connection (JDBC) values; driver to specify

the JDBC class; and bjinolapPath to indicate the directory where the BJIn OLAP Tool will manipulate folders and

files associated to the bitmap join indices.

Another relevant feature implemented in the BJIn OLAP Tool is the log, which records every command issued by

the tool, e.g. DBMS and operating system commands. All the described operations detailed in the previous sections

have their specific logs. Every runtime error is recorded. As a result, the log benefits debugging the software. This

feature was implemented using the log4j library (http://logging.apache.org).

Currently, our tool is compatible to the operating systems Windows and Linux, to the DBMSs PostgreSQL,

MySQL and IBM DB2®, and to the browsers Opera, Chrome, Firefox, IE8 and IE9. Regarding the Java Virtual

Machine, its version 7 is compatible.

Fig. 11: Dropping bitmap join indices with the BJIn OLAP Tool

 4 Experimental Evaluation

This section presents the experimental evaluation of the BJIn OLAP Tool, which was done by running performance

tests. The results point out the remarkable performance of the BJIn OLAP Tool to process the following OLAP

operations: drill-down, roll-up and slice-and-dice. We investigate the performance of our tool against the current

technology of DBMS and against the Mondrian OLAP Server. Since the pivoting OLAP operation is performed on

the client side, it was not evaluated in our tests.

In section 4.1 we detail the experimental setup used to execute the tests. The first test, in Section 4.2, compares

the slice-and-dice query processing performance for the BJIn OLAP Tool, vertically fragmented views stored by the

DBMS and Mondrian OLAP Server. Furthermore, storage requirements and attributes’ cardinalities are addressed.

In Section 4.3 we focus on the drill-down and roll-up query processing performance. Section 4.4 describes the

results regarding a more voluminous DW and the use of materialized views and bitmap join indices built over these

views. In Section 4.5, the performance of rendering interface components on the client side is assessed. Section 4.6

details the memory usage, while Section 4.7 evaluates the query processing performance and the portability issues.

Finally, Section 4.8 focuses the cost of appending new rows to bitmap join indices using the BJIn OLAP Tool.

 4.1 Experimental setup

Regarding the datasets, we used the Star Schema Benchmark (SSB) [18] to create two star schemas identical to that

in Fig. 1. The DW1 dataset was loaded according to the SSB scale factor 1 and produced 6 million rows in the fact

table, while the DW10 dataset was loaded with scale factor 10 and therefore was 10 times more voluminous than

DW1. Both of them held attribute hierarchies such as (s_region) (s_nation) (s_city) (s_address) and

(c_region) (c_nation) (c_city) (c_address), then enabling the experimental evaluation of drill-down and roll-

up operations. The DBMS automatically created B-trees to index the attributes that composed the primary keys of

each table in DW1 and DW10 datasets. We did not create any additional indices.

The workload was composed of SSB’s queries, which are organized in four groups of queries Q1, Q2, Q3 and Q4

and have increasing complexity [18]. Each group of query determines an intrinsic number of joins and filters, as

well as groupings and sorting. Fig. 12 illustrates each query group template. These templates are described in terms

of the operations that are computed to execute their queries in Table 2. Since the queries have filters in the WHERE

clause, they enable slice-and-dice operations. The drill-down and roll-up operations were evaluated following the

SSB’s queries Q3.1, Q3.2, Q3.3 and Q3.4. Executing them progressively determines a drill-down operation, while

the inverse execution consists of a roll-up operation. These queries are shown in Fig. 13, and the attributes used for

drill-down and roll-up operations are highlighted in bold.

Other datasets were created as vertically fragmented views and materialized views, similarly to those of Section

2.2. Their descriptions are provided in the next sections. In addition to low cardinality attributes, all queries involve

http://logging.apache.org/

at least one high cardinality attribute. For instance, lo_revenue attribute has a cardinality of 3,345,588 in the DW1

dataset, and a cardinality of 5,841,774 in the DW10 dataset. These attributes were used aiming at assessing our tool

when dealing with high cardinality.

Q1
SELECT SUM(lo_extendedprice*lo_discount) AS revenue
FROM Lineorder, Date
WHERE lo_orderdate = d_datekey
 AND d_year = [YEAR]
 AND lo_discount BETWEEN [DISCOUNT] - 1
 AND [DISCOUNT] + 1
 AND lo_quantity < [QUANTITY];

Q2
SELECT SUM(lo_revenue), d_year, p_brand1
FROM Lineorder, Date, Part, Supplier
WHERE lo_orderdate = d_datekey
 AND lo_partkey = p_partkey
 AND lo_suppkey = s_suppkey
 AND p_category = 'MFGR#12'
 AND s_region = 'AMERICA'
 GROUP BY d_year, p_brand1
 ORDER BY d_year, p_brand1;

Q3
SELECT c_nation, s_nation, d_year,
 SUM(lo_revenue) AS revenue
FROM Customer, Lineorder, Supplier, Date
WHERE lo_custkey = c_custkey
 AND lo_suppkey = s_suppkey
 AND lo_orderdate = d_datekey
 AND c_region = 'ASIA'
 AND s_region = 'ASIA'
 AND d_year >= 1992 AND d_year <= 1997
GROUP BY c_nation, s_nation, d_year
ORDER BY d_year asc, revenue DESC;

Q4
SELECT d_year, c_nation,
 SUM(lo_revenue - lo_supplycost) AS profit
FROM Date, Customer, Supplier, Part, Lineorder
WHERE lo_custkey = c_custkey
 AND lo_suppkey = s_suppkey
 AND lo_partkey = p_partkey
 AND lo_orderdate = d_datekey
 AND c_region = 'AMERICA'
 AND s_region = 'AMERICA'
 AND (p_mfgr = 'MFGR#1' OR p_mfgr = 'MFGR#2')
GROUP BY d_year, c_nation
ORDER BY d_year, c_nation;

Fig. 12: The templates for the SSB’s queries [18].

Table 2: Description of the queries templates in Fig. 12

Query Group Joins Filters Aggregation? Sorting? Attributes to be indexed

Q1 1 3 No No 4

Q2 3 2 Yes Yes 5

Q3 3 3 Yes Yes 7

Q4 4 3 Yes Yes 7

Q3.1
SELECT c_nation, s_nation, d_year, sum(lo_revenue) AS revenue
FROM customer, lineorder, supplier, date
WHERE lo_custkey = c_custkey
 AND lo_suppkey = s_suppkey
 AND lo_orderdate = d_datekey
 AND c_region = 'ASIA' AND s_region = 'ASIA'
 AND d_year >= 1992 AND d_year <= 1997
GROUP BY c_nation, s_nation, d_year
ORDER BY d_year ASC, revenue DESC;

Q3.2
SELECT c_city, s_city, d_year, sum(lo_revenue) AS revenue
FROM customer, lineorder, supplier, date
WHERE lo_custkey = c_custkey
 AND lo_suppkey = s_suppkey
 AND lo_orderdate = d_datekey
 AND c_nation = 'JAPAN' AND s_nation = 'JAPAN'
 AND d_year >= 1992 AND d_year <= 1997
GROUP BY c_city, s_city, d_year
ORDER BY d_year ASC, revenue DESC;

Q3.3
SELECT c_city, s_city, d_year, sum(lo_revenue) AS revenue
FROM customer, lineorder, supplier, date
WHERE lo_custkey = c_custkey
AND lo_suppkey = s_suppkey
AND lo_orderdate = d_datekey
AND (c_city = 'JAPAN 1' OR c_city = 'JAPAN 5')
AND (s_city = 'JAPAN 1' OR s_city = 'JAPAN 5')
AND d_year >= 1992 and d_year <= 1997
GROUP BY c_city, s_city, d_year
ORDER BY d_year ASC, revenue DESC;

Q3.4
SELECT c_city, s_city, d_year, sum(lo_revenue) AS revenue
FROM customer, lineorder, supplier, date
WHERE lo_custkey = c_custkey
AND lo_suppkey = s_suppkey
AND lo_orderdate = d_datekey
AND (c_city = 'JAPAN 1' OR c_city = 'JAPAN 5')
AND (s_city = 'JAPAN 1' OR s_city = 'JAPAN 5')
AND d_yearmonth = 'Dec1997'
GROUP BY c_city, s_city, d_year
ORDER BY d_year asc, revenue DESC;

Fig. 13: Adapted queries to evaluate drill-down and roll-up operations

The hardware and software platforms used are described as follows.

 Platform P1 was a computer with an Intel® Core™ 2 Duo processor with frequency of 2.80GHz, 320 GB

SATA hard drive with 7200 RPM, and 3 GB of main memory. The operating system was CentOS 5.4 with

Kernel Version 2.6.18-164.el5, and the following softwares were installed: FastBit 1.2.2, PostgreSQL 8.4,

JDK 1.6.0_21 and Apache Tomcat 6.0.29; and

 Platform P2 comprised a computer with an Intel® Core™ i5 processor with frequency of 2.66GHz, 640 GB

SATA hard drive with 7200 RPM, 4 GB of main memory, Ubuntu 10.10 with Kernel 2.6.35-27, FastBit

1.2.4, PostgreSQL 9.0, JDK 1.6.0_24 and Apache Tomcat 7.0.14.

Two distinct platforms were utilized due to the costly operations involved. Both P1 and P2 platforms had Open

Ajax Toolkit 2.8, Mondrian Schema Workbench 3.2.0 and Mondrian OLAP Server 3.2.1.13885 installed. Finally, all

bitmap join indices were built with WAH compression algorithm, equality encoding and no binning. These features

are enabled by the FastBit by default to improve Bitmap indices over high cardinality attributes [14].

 4.2 Comparing the BJIn OLAP Tool to vertically fragmented views

These experiments were conducted in platform P1 and considered the following configurations to execute queries:

 SJ used the DBMS to compute the star-join on the DW1 dataset;

 VFM used the DBMS to avoid joins by accessing a specific vertically fragmented view that was previously

built over the DW1 dataset;

 BJIn OLAP Tool avoided joins by accessing bitmap join indices that were previously built over the DW1

dataset; and

 Mondrian OLAP Server to access the DW1 dataset using MDX.

Note that the VFM configuration demanded the creation of one vertically fragmented view for each SSB query,

similarly to that view of Section 2.2. We performed all tests locally to avoid network latency. All SSB’s queries

were issued, and the system cache was flushed after the execution of each query. We gathered the elapsed time in

seconds to process each query. The results were reported in Fig. 14.

Clearly, the BJIn OLAP Tool outperformed all the other configurations, corroborating the use of the bitmap join

index to process OLAP queries. On the other hand, the Mondrian configuration was the one that mostly impaired the

query processing performance. In fact, OLAP servers often access the star schema maintained by the DBMS in

order to perform the queries, mapping MDX to SQL queries. Therefore, as the Mondrian configuration accessed

DW1 just as the SJ configuration did, it was already expected that they would obtain similar results. Furthermore,

there was an overhead that differed Mondrian and SJ configurations, since only the former needed to prepare Java

Server Pages and render cross tables to show to the user. Both the SJ and the Mondrian configurations provided

unacceptable query response times.

Fig. 14: Elapsed time obtained by each configuration to process SSB’s queries

Moreover, the VFM configuration overcame the SJ configuration since the former avoids joins. The exceptions

were queries Q4.1 and Q4.2, where the VFM configuration performed a sequential scan on the text attribute p_mfgr

introducing an overhead. However, the improvement provided by the VFM configuration was smaller than the

improvement achieved by our tool to process queries. Actually, the time reduction imposed by the BJIn OLAP Tool

over vertically fragmented views ranged from 33% in Q3.3 up to 84% in Q2.2. The time reduction is a percentage

that determines how much more efficient one configuration was than other configuration. Note that, as every query

of the workload had restrictions in the WHERE clause, the results corroborated the use of the bitmap join index in

OLAP tools to improve the performance of the slice-and-dice operation.

The attribute’s cardinality is a very important issue whenever dealing with bitmap indices, since it determines the

quantity of bit-vectors built for the corresponding attribute. Fig. 15 illustrates, for the indices built for each query,

the quantity of bit-vectors available, i.e. the sum of the cardinalities of all indexed attributes. Only the indices of

group Q1 have less than 3 million bit-vectors. According to our assessments, every query execution accessed more

than 99% of the available bit-vectors. Therefore, the results revealed that the BJIn OLAP Tool efficiently performed

queries even for very high cardinalities and accessing a huge number of bit-vectors.

The construction of the bitmap join indices spent 1,896 seconds, while the vertically fragmented views accessed

by the DBMS spent 6,225 seconds to be built. Regarding storage, Fig. 16 shows individual requirements for both

vertically fragmented views (VFM) and bitmap join indices that were build to process each SSB query. Naturally, as

more bit-vectors need to be built (Fig. 15), more storage space is required (Fig. 16). As a result, VFMs and bitmap

join indices that were built for group Q1 required less storage space than other groups. Also, for group Q1, the

bitmap join indices occupied less space than vertically fragmented views.

Fig. 15: Quantity of bit-vectors available for the index of each query

Fig. 16: Storage requirements for both the vertically fragmented views and the bitmap join indices

On the other hand, considering groups Q2, Q3 and Q4, indices required more storage space than views. Although

the cardinalities of the attributes in groups Q2, Q3 and Q4 were similar (Fig. 15), the storage requirements varied

according to each query as shown in Fig. 16. This difference is due to the existence of attributes of distinct data

types (and sizes in bytes) in each query. For instance, although queries Q2.1 and Q4.2 had bitmap join indices with

similar cardinalities built (Fig. 15), their indices occupied distinct amount of storage space (Fig. 16). Finally, the

DW1 dataset occupied 838 MB, the created vertical fragmented views occupied a sum of 5,193 MB, and the bitmap

join indices occupied a sum of 5,652 MB. Compared to vertically fragmented views, bitmap join indices required

8.8% more disk space. However, these indices have reasonably improved the query processing performance and

spent less time to be built.

 4.3 Drill-down and roll-up operations

In this test we evaluated drill-down and roll-up operations using platform P1 and the following test configurations:

 BJIn OLAP Tool avoided joins by accessing bitmap join indices built over the DW1 dataset, comprising the

attributes d_year, d_yearmonth, s_region, s_nation, s_city, c_region, c_nation, c_city and lo_revenue; and

 Mondrian OLAP Server to access the DW1 dataset using MDX.

We executed the queries shown in Fig. 13 consecutively without flushing the system cache between each query.

This strategy allows the cache to be used and therefore to rapidly fetch partial results of the query. We performed

both the drill-down and roll-up operations five times, gathered the elapsed time of each specific query and later

calculated the average. Also, we calculated the total elapsed time of each OLAP operation and the time reduction

provided by the BJIn OLAP Tool over Mondrian.

The results were reported in Table 3, and revealed that the first query, i.e. the query Q3.1, was the costly query of

the drill-down operation. This fact confirmed the importance of the cache whenever performing this OLAP

operation, in order to rapidly fetch partial query results, and then provide a shorter elapsed time to process the

subsequent queries. An important result derived from our experiments is that the BJIn OLAP Tool greatly

outperformed the Mondrian configuration to execute the first query of both drill-down and roll-up operations, i.e.

Q3.1 and Q3.4, respectively.

The experiments had also shown that the BJIn OLAP Tool drastically decreased the query response time to

process drill-down and roll-up operations. Actually, our tool provided a time reduction of at least 45% over

Mondrian. This fact corroborated the use of the bitmap join index in OLAP tools in order to improve the query

processing performance of drill-down and roll-up operations.

Table 3: Drill-down and roll-up operations performed by Mondrian and the BJIn OLAP Tool

 Drill-down (s): Q3.1 down to Q3.4 Roll-up (s): Q3.4 up to Q3.1

Query Mondrian BJIn OLAP Tool Mondrian BJIn OLAP Tool

Q3.1 226.553 73.835 4.356 50.067

Q3.2 3.738 52.651 3.390 5.482

Q3.3 0.239 0.648 2.875 29.708

Q3.4 2.866 0.411 231.313 45.403

Total 233.396 127.545 241.934 130.660

Time Reduction (%) 45.35% 45.99%

 4.4 Increasing Data Volume and Accessing Materialized Views

In order to assess our BJIn OLAP Tool for its efficiency and scalability, we performed experiments with a greater

data volume (DW10) than those used in sections 4.2 and 4.3 (DW1), and the same platform P1. Besides, in this

section we state four new configurations as follows:

 DBMS+MV was the DBMS avoiding joins by accessing specific materialized views that were built to

process each one of the SSB’s queries over the DW10 dataset (similarly to the view shown in Fig. 5a);

 Mondrian+MV was the Mondrian OLAP Server accessing the previously cited materialized views using

MDX and Aggregate Tables;

 FastBit used the FastBit to avoid joins by accessing bitmap join indices that were previously built over the

cited materialized views (similarly to Fig. 5b); and

 BJIn OLAP Tool to avoid joins by accessing the previously mentioned bitmap join indices.

Although the DW10 had a greater volume, materialized views drastically reduced the quantity of rows. We

performed all tests locally to avoid network latency. This test also compared the performance of the OLAP tool and

its query engine, aiming to estimate the overhead, i.e. the difference between the time spent by the OLAP tool and

the time spent by the query engine. While the query engine of Mondrian is the DBMS, the query engine of the BJIn

OLAP Tool is the FastBit. All queries of the SSB were issued, and the system cache was flushed after the execution

of each query. We gathered the elapsed time in seconds to process each query. The results were reported in Fig. 17.

The results revealed that the BJIn OLAP Tool outperformed the Mondrian configuration in every query.

Concerning the engines, the FastBit outperformed the DBMS in most queries, except for group Q1, which has a very

low volume (less than 100 rows). Actually, the time reduction imposed by the BJIn OLAP Tool over the Mondrian

configuration ranged from 71% in Q1.2 up to 97% in Q3.4. Therefore, our tool demonstrated to be feasible when

indexing materialized views and processing queries using these indices.

Fig. 17: Elapsed time to process SSB’s queries on DW10 dataset, in logarithmic scale (base 10)

Another interesting result showed that the BJIn OLAP Tool was capable of displaying the query results much

more rapidly than the Mondrian configuration. Fig. 18 shows how many seconds of overhead each OLAP tool added

to the elapsed time spent by the query engine to process each query. In other words, it represents the difference

between the OLAP tool elapsed time and the engine elapsed time, derived from Fig. 17. Although the DBMS

provides the query answer quickly, there is an overhead that severely impaired the Mondrian configuration

performance to cache the data cube, translate MDX and render the results. This overhead ranged from 11 seconds

(Q1.2) to 83 seconds (Q4.1). This severe overhead was not observed on the BJIn OLAP Tool, which introduced only

a few seconds to the FastBit elapsed time, i.e. at most 3 seconds (Q2.2).

Regarding storage, the DW10 dataset occupied 10,540 MB, all bitmap join indices required 51 MB and all

materialized views required 45.6 MB. The construction of the materialized views by the DBMS spent 174,416

seconds, while the indices spent 163 seconds to be built over these views. Although the indices added approximately

12% of storage requirements to materialized views, they greatly improved the query processing performance over

the DW10 dataset. Also, the time to build the indices over the materialized views added only 0.00094% to the

elapsed time to build these views.

Fig. 18: The overhead tool added to the elapsed time spent by the query engine

 4.5 Rendering interface components on the client side to present the query results

In this section we evaluate the time spent by OLAP tools to render the interface components and present the

query results to the user. Differently from the previous and remaining sections, this test assesses the performance on

the client side. This evaluation was motivated by the fact that OLAP tools added significant overheads to the query

processing elapsed times of their corresponding query engines, as discussed in Section 4.5. We measured how much

time Mondrian and the BJIn OLAP Tool spent to load the entire Java Server Page, starting at the moment when the

first byte transferred from the server became available, and finishing when the page became completely loaded on

the client’s Internet browser. We decided to use the queries of group Q3 (Fig. 13) because they were the most costly

according to the results of sections 4.1 to 4.4. Table 4 describes how many rows and columns composed the cross

table to display the results of each query regarding the DW1 and DW10 datasets. Note that these datasets have

different data volumes as they were generated according to SSB’s scale factors 1 and 10, respectively. As a result,

the quantity of rows for the DW1 and the DW10 datasets are not the same in Table 4. All tests were executed in

platform P2 due to the complexity of the involved operations. We utilized the Mozilla Firefox 3.6.15 as Internet

browser and gathered the elapsed time to load the pages with the utility FireBug 1.7.3.

Table 4: Rows and columns that compose the cross table showing the queries’ results

 Q3.1 Q3.2 Q3.3 Q3.4

Columns
c_nation, s_nation,

d_year, sum(lo_revenue)

c_city, s_city, d_year,

sum(lo_revenue)

c_city, s_city, d_year,

sum(lo_revenue)

c_city, s_city, d_year,

sum(lo_revenue)

Rows DW1 150 596 24 3

Rows DW10 150 600 24 4

Firstly, we issued five times the queries of group Q3 over the DW1 dataset, gathered the elapsed time to load

the page, and then calculated the average. The system cache was flushed between each query execution. We

evaluated the following configurations:

 Mondrian+SJ accessed the DW1 dataset using MDX; and

 BJIn OLAP Tool avoided joins by accessing bitmap join indices built for each query of group Q3.

The results are shown in Fig. 19a. They revealed that the BJIn OLAP Tool was three to five times more efficient

than Mondrian to present the query results for the client on the Internet browser, considering Q3.1 and Q3.2,

respectively. In addition, the BJIn OLAP Tool spent the shorter time to render the larger cross table, i.e., for Q3.2.

Secondly, we rerun the experiment over the DW10 dataset and evaluated the following configurations:

 Mondrian+MV accessed specific materialized views that were built to process each one of the four Q3

queries; and

 BJIn OLAP Tool+MV avoided joins by accessing bitmap join indices built over the mentioned materialized

views.

The results are shown in Fig. 19b and revealed that rendering the results of queries over a more voluminous DW

did not impair the performance of both the BJIn OLAP Tool and Mondrian, if compared to the results of Fig. 19a.

Although the query results and the number of rows of the cross table slightly differed (due to the different scale

factors chosen for data generation, 1 and 10), there was no significant modifications on performance. Furthermore,

the BJIn OLAP Tool outperformed Mondrian in all queries. Since the results of queries processed by the BJIn

OLAP Tool are written in a CSV file (Fig. 9) and sent through JSON to the client, if a given query is processed by

more voluminous indices (e.g. BJIn OLAP Tool configuration) or less voluminous indices (e.g. BJIn OLAP

Tool+MV configuration), the performances to load the results on the query browser were similar and independent of

the index data volume.

(a) tests executed over the DW1 dataset (b) tests executed over the DW10 dataset

Fig. 19: Elapsed time to load the pages with the answers of the queries in group Q3.

Finally, we issued five times the drill-down and the roll-up operations of query group Q3 over the DW10 dataset,

gathered the elapsed time of each query and calculated the average of these five executions. The system cache was

+MV

not flushed between each query execution, aiming at fetching previously computed results in the cache. We

evaluated the following configurations:

 Mondrian+MV avoided joins by accessing a specific materialized view that was built to process all queries

of the Q3 query group (i.e. Aggregate Table); and

 BJIn OLAP Tool avoided joins by accessing bitmap join indices that were built over the previously cited

materialized view.

The results for the drill-down operation are shown in Fig. 20a and revealed that the BJIn OLAP Tool

outperformed Mondrian in all queries. Also, our tool has proven to efficiently reuse cache and JSON to render the

interface, since it drastically reduced the elapsed time to display the results of the subsequent queries that followed

Q3.1. BJIn OLAP Tool also provided a maximum time reduction of 97% when executing Q3.2 after Q3.1, and a

minimum time reduction of 8% when executing Q3.4 after Q3.3.

The results for the roll-up operation are shown in Fig. 20b and revealed that the BJIn OLAP Tool outperformed

Mondrian in all queries. Differently from the drill-down operation, the roll-up operation did not indicate decreasing

response times when executing consecutive queries, for both the BJIn OLAP Tool and Mondrian. Particularly, there

was an increase when executing the query Q3.1 after the query Q3.2 with our tool. This fact can be explained by the

execution of a data aggregation that reduced 600 rows (Q3.2) to 150 rows (Q3.1) as shown in Table 4, causing an

overhead. Even though, the response times to present the queries’ results were not greater than 0.009s. Again, the

BJIn OLAP Tool drastically reduced the elapsed time to display the results of the subsequent queries that followed

Q3.4, due to the use of cache and JSON.

(a) interface test on the drill-down operation (b) interface test on the roll-up operation

Fig. 20: Elapsed time to load the pages with the answers of drill-down and roll-up operations.

In short, the results presented in this section corroborated the reasonable performance of the interface components

adopted by the BJIn OLAP Tool, and provided by the Open Ajax Toolkit Framework. Furthermore, these results

were achieved flushing the cache when issuing individual queries (Fig. 19), or maintaining the cache to reuse

previously fetched results and then benefit drill-down and roll-up operations (Fig. 20).

 4.6 Memory usage

In this section we present a test that measured and compared the amount of main memory utilized by each OLAP

tool. The web applications of Mondrian and of the BJIn OLAP Tool consumed the Java Virtual Machine heap that

was measured using the NetBeans Profiler. This software is widely used by developers since is integrated to the

NetBeans IDE and is free of charge. Also, the DBMS and the FastBit utilized the main memory managed by the

operating system, which was measured using the ps_mem.py library. We summed the amount of memory of the

OLAP tools and their corresponding query engines. In this section, all tests were run in platform P2 due to the

complexity of the involved operations.

Firstly, we issued the Q3 roll-up operation (Fig. 13) over the DW1 dataset and evaluated the following

configurations:

 Mondrian was the Mondrian OLAP Server accessing the DW1 with the DBMS as query engine; and

 BJIn OLAP Tool avoided joins by accessing bitmap join indices with the FastBit as query engine.

Fig. 21 shows the results. The BJIn OLAP Tool had peaks of memory usage whenever one of the four queries

was submitted to FastBit. These peaks indicated much more memory usage than Mondrian. However, the BJIn

OLAP Tool spent a shorter time to provide the query answer. We concluded that, for the roll-up operation, our tool

required more memory in a shorter period, while Mondrian required less and increasing memory for a longer period.

Fig. 21: Memory usage for the roll-up operation over DW1 dataset

Secondly, we issued the query Q3.4 (Fig. 13) over the DW10 dataset and evaluated the following

configurations:

 Mondrian was the Mondrian OLAP Server accessing the materialized view using MDX and an Aggregate

Table, using the DBMS as query engine;

 BJIn OLAP Tool avoided joins by accessing bitmap join indices that were built over the cited materialized

view, using the FastBit as query engine.

The results are shown in Fig. 22. Although the BJIn OLAP Tool consumed more memory than Mondrian during

the initial 6 seconds of execution, it provided a much shorter elapsed time than the latter. Also, Mondrian drastically

increased its memory consumption after 6 seconds of execution. The FastBit introduced only one peak of memory

consumption (totalizing 55MB) that lasted around 1 second. Again, our OLAP tool had a feasible memory usage,

even considering the most costly query (according to Fig. 17).

Fig. 22: Memory usage for the query Q3.4 issued over the DW10 dataset

 4.7 Portability and the query processing performance

In this section we assess the query processing performance of both Mondrian and the BJIn OLAP Tool in two

different operating systems aiming at testing the portability. In addition to Linux Ubuntu, we installed Microsoft

Windows 7 SP1 Professional 64 bits in the platform P2. Firstly, we issued five times the queries of group Q3 (Fig.

13) over the DW1 dataset, gathered the elapsed time of each query and calculated the average of these five

executions. The system cache was flushed between each query execution. We evaluated the following

configurations in both operating systems (namely Win and Linux):

 Mondrian+SJ accessed the DW1 dataset using MDX; and

 BJIn OLAP Tool avoided joins by accessing bitmap join indices built over the DW1 dataset.

The results are shown in Fig. 23. Clearly, the BJIn OLAP Tool outperformed Mondrian in both operating

systems. Comparing Mondrian to itself, it was notably more efficient in one of the operating systems. On the other

hand, our tool achieved similar results in most queries, independently from the operating system.

Fig. 23: Portability and the query processing performance for the DW1 dataset

Secondly, we repeated the previously described procedures on DW10 dataset to evaluate the following

configurations in both operating system (namely Win and Linux):

 Mondrian+MV avoided joins by accessing a specific materialized views that was built to process all queries

of the Q3 query group (i.e. an Aggregate Table); and

 BJIn OLAP Tool avoided joins by accessing bitmap join indices that were built over the previously cited

materialized view.

The results are shown in Fig. 24. Again, the BJIn OLAP Tool outperformed Mondrian in both operating systems.

Comparing Mondrian to itself, it was notably more efficient in one of the operating systems. Both Mondrian and the

BJIn OLAP Tool were more efficient in the Linux operating system when dealing with materialized views and

indices built over materialized views, respectively.

Fig. 24: Portability and the query processing performance for the DW10 dataset

 4.8 Appending new rows to bitmap join indices

In this section we evaluate the performance of the append operation over bitmap join indices maintained by the BJIn

OLAP Tool. We utilized the platform P2, the DW1 dataset, and the most costly bitmap join indices concerning

storage requirements, i.e., those indices built to answer the query Q4.2 (see Fig. 16). We also introduced a workload

composed of 10% of the original index volume, i.e., 600,000 new rows to be appended to the fact table Lineorder. In

addition, new values were also introduced in the dimension tables of the DW. As a result, the operation not only

appended new bits to existing bit-vectors, but also created new bit-vectors and increased the attributes’ cardinalities

as shown in Table 5. Each new bit-vector created had a minimum of 6 million bits with value 0, since these bits

refer to the former existing rows of the index.

Table 5: How many new bit-vectors were created for each indexed attribute

Attribute d_year s_nation p_category lo_revenue lo_supplycost s_region c_region p_mfgr

New bit-vectors 2 3 5 0 0 0 0 2

The first test assessed the performance of the insertion of new rows in the DW1 dataset. The insertion of the new

rows spent 184.03 seconds considering the DW1 dataset with the append trigger. On the other hand, the same

insertion took 126.89 seconds without the trigger. Therefore, the execution of the trigger introduced an overhead of

31.05% to the normal insertion in the DW1 dataset. This overhead should be taken into account when using the BJIn

OLAP Tool, since it delays the insertion of new rows into the DW tables. Particularly, the delay is caused mainly

due to several queries issued by the trigger before the insertion into the temporary table (line 08 of Algorithm 1).

The second test evaluated the time to process the following tasks related to the append operation of the BJIn

OLAP Tool: dumping the temporary table using the DBMS and executing ardea and ibis commands in the FastBit

to append new values and create new bit-vectors. The whole process took 15.45 seconds. Fig. 25a reveals that

dumping the temporary table consumed 45.12% of the time spent for the append operation. On the other hand, the

manipulation of the indices consumed 54.88% of this time. Therefore, the tasks performed by the FastBit

demonstrated to be more costly than those performed by the DBMS.

(a) tasks developed by the DBMS and the FastBit (b) comparison between building and append operations

Fig. 25: Tests regarding the append operation

Finally, the last test compared the building operation to the append operation, according to the tasks performed by

the DBMS and the FastBit. We aimed to identify if rebuilding the indices would be more advantageous than

appending new rows to them. The results are shown in Fig. 25b. The FastBit execution spent the major parcel of the

elapsed time to build the indices, as already identified for the task of appending new rows to indices (Fig. 25a).

Also, the building operation took 120.33 seconds, while the append operation took only 15.45 seconds. Therefore,

appending new rows to the indices has shown to be more advantageous than rebuilding these indices, since the

append operation represented only 12.84% of the time spent by the building operation.

 5 Related Work

In Table 6 existing software are compared to the BJIn OLAP Tool. Oracle BI enables the bitmap join index and new

rows to be appended to it. However, the use of this index is recommended only when indexing very low cardinality

attributes [5]. Conversely, the FastBit provides the support to index attributes with higher cardinalities for our tool,

e.g. lo_revenue whose cardinality is 3,345,588. Furthermore, Oracle BI platform is not open source software, does

not consist of a web application and therefore was not employed in our performance evaluation.

Regarding the Mondrian OLAP Server [6], although it supports materialized views to improve the query

processing performance, it currently does not support the bitmap join index. Moreover, the user must learn and type

MDX to issue queries. On the other hand, the BJIn OLAP Tool uses this index and supports a query language that is

syntactically based on SQL. Although this query language does not provide OLAP operations, the user is able to

perform them from the BJIn OLAP Tool graphical user interface. As a result, the BJIn OLAP Tool does not require

knowledge about additional query languages, such as MDX that is commonly adopted by existing OLAP Tools

[6][5][4][20]. Besides, Mondrian does not implement any mechanisms to append new rows to materialized views,

while the BJIn OLAP Tool enables new rows to be appended to bitmap join indices.

Important issues regarding the design of the interfaces of Mondrian and the BJIn OLAP Tool need to be stated.

The former employs synchronous requests to transfer data from the server to the client. As a result, the server

retrieves the query answer and sends preprocessed cross tables and charts to the client, which interprets the HTML

code and renders the components. On the other hand, the latter employs asynchronous requests through Ajax and

processes JSON [26] sent by the server on the client side. In short, our tool processes interface components on the

client side, while Mondrian does not. We did not consider existing unofficial Mondrian extensions.

Table 6: Comparison among existing software and the BJIn OLAP Tool

Feature Oracle BI Mondrian FastBit BJIn OLAP Tool

Supports the bitmap join index

Supports OLAP operations

Avoids typing complex OS commands

Avoids typing complex DBMS commands

Provides information visualization methods

Is open source software

Is a web application

Implements the append operation

Uses asynchronous requests and JSON

In addition, the BJIn OLAP Tool interestingly uses the FastBit to be applied over DW and support drill-down,

roll-up, slice-and-dice and pivoting OLAP operations. Although the FastBit natively supports the bitmap join index,

building, appending rows to and dropping this index require many long and complex instructions to be typed by the

user, both in the operating system and DBMS command lines. The BJIn OLAP Tool avoids keyboarding by

enabling a graphical interface for the user. Also, our tool operates the FastBit on the server side, while in the client

side the results of queries are displayed to the user in cross tables and charts via the web.

The experimental evaluation presented in Section 4 aimed at testing the BJIn OLAP Tool. We investigated the

feasibility of developing an OLAP tool exclusively based on the bitmap join index to process OLAP operations such

as drill-down, roll-up, slice-and-dice and pivoting, comparing it to existing software. Differently from [27], our goal

was not to exhaustively assess the bitmap join index against other join indices. Also, we have not considered

specific algorithms to select the bitmap join indices, as already stated by [15].

 6 Conclusions and Future Work

In this paper, we introduced the BJIn OLAP Tool to efficiently perform drill-down, roll-up, slice-and-dice and

pivoting OLAP operations over DW, by employing the bitmap join index. The BJIn OLAP Tool is Free Software

and was implemented and tested through a performance evaluation to assess its efficiency and to corroborate the

feasibility of adopting strictly the bitmap join index in an OLAP tool. The performance results reported that our

BJIn OLAP Tool provided a performance gain that ranged from 31% up to 97% if compared to existing solutions

regarding the query processing, even for attributes with a very high cardinality. Furthermore, our tool has proven to

efficiently process these operations both on the server and client sides, for different volumes of data and also taking

into account different operating systems, enforcing its portability. In addition, the BJIn OLAP Tool provides a

reasonable use of the main memory and enables new rows to be appended to bitmap join indices.

Currently, the BJIn OLAP Tool is being applied to the Web-PIDE Project over DW containing real educational

data from Brazilian Government [28][29], to aid decision takers on planning Educational Policies. Moreover, our

tool is under a registration process to be formally registered as Free Software, and its internet portal is under

development. As future work, we intend to investigate drill-across OLAP operations, adapt the tool for Spatial

OLAP operations [17] and enable the use on mobile devices [30]. Also, the BJIn OLAP Tool will be and its Portal

will contain proper documentation.

Acknowledgements

The 1
st
 author thanks the support of IFSP Undergraduate Research Grant.

The 2
nd

 author thanks Projeto Web-PIDE (Observatório da Educação: CAPES/INEP).

References

[1] R. Wrembel, C. Koncilia, Data Warehouses and OLAP: Concepts, Architectures and Solutions. IRM Press,

2006.

[2] L. Xu, L. Zeng, Z. Shi, Q. He, M. Wang, “Research on business intelligence in enterprise computing

environment,” IEEE SMC, pp.3270-3275, 2007.

[3] W. H. Inmon, Building the Data Warehouse. Wiley, 2002.

[4] M. Golfarelli, “Open source BI platforms: a functional and architectural comparison,” DaWaK, pp. 287-297,

Springer, 2009.

[5] S. Fogel, C. Johnston, S. Moore, T. Morales, P. Potineri, R. Urbano, L. Ashdown, J. Greenberg, Oracle 11g

database administratorʼs guide. 2010.

[6] M. Casters, R. Bouman, J. Dongen, Pentaho® Kettle Solutions. Sybex, 2010.

[7] S. Chaudhuri, U. Dayal, “An overview of data warehousing and OLAP technology,” SIGMOD Record, vol.

26, pp. 65-74, 1997.

[8] M. Golfarelli, D. Maio, S. Rizzi, “Applying vertical fragmentation techniques in logical design of

multidimensional databases,” DaWaK, pp. 11-23, Springer, 2000.

[9] E. Baikousi, P. Vassiliadis, “View usability and safety for the answering of top-k queries via materialized

views,” DOLAP, pp. 97-104, ACM, New York, 2009.

[10] L. Bellatreche, K. Y. Woameno, “Dimension table driven approach to referential partition relational data

warehouses,” DOLAP, pp. 9-16. ACM, New York, 2009.

[11] V. Harinarayan, A. Rajaraman, J. D. Ullman, “Implementing data cubes efficiently,” SIGMOD Record, vol.

25, pp. 205-216, 1996.

[12] A. S. Firmino, R. C. Mateus, V. C. Times, L. F. Cabral, T. L. L. Siqueira, R. R. Ciferri, C. D. A. Ciferri, “A

Novel Method for Selecting and Materializing Views based on OLAP Signatures and GRASP,” JIDM, vol. 2,

no. 3, pp. 479-494, 2011.

[13] P. OʼNeil, G. Graefe, “Multi-table joins through bitmapped join indices,” SIGMOD Record, vol. 24, pp. 8-11,

1995.

[14] K. Stockinger, K. Wu, “Bitmap indices for data warehouses,” in Data Warehouses and OLAP, IRM Press,

2006, pp. 157-178.

[15] L. Bellatreche, K. Boukhalfa, “Yet Another Algorithms for Selecting Bitmap Join Indexes” DaWaK, pp. 105-

116, 2010.

[16] A. C. Carniel, T. L. L. Siqueira, “An OLAP Tool based on the Bitmap Join Index,” CLEI, pp. 911-926, 2011.

[17] T. L. L. Siqueira, C. D. A. Ciferri, V. C. Times, R. R. Ciferri, “The SB-index and the HSB-Index: efficient

indices for spatial data warehouses,” Geoinformatica, vol.16, no. 1, pp. 165-205, 2011.

[18] P. O’Neil, E. O’Neil, X. Chen, S. Revilak, “The star schema benchmark and augmented fact table indexing,”

TPCTC, pp. 237–252, 2009.

[19] R. Kimball, M. Ross, The data warehouse toolkit: the complete guide to dimensional modeling. John Wiley &

Sons, Inc., Chichester, 2002.

[20] M. Whitehorn, R. Zare, M. Pasumansky, Fast Track to MDX. Springer, 2005.

[21] N. C. Zakas, J. McPeak, J. Fawcett, “What is Ajax?,” in Professional Ajax, Wiley Publishing Inc., 2006, pp. 1-45.

[22] C. Y. Chan, “Bitmap Index,” in Encyclopedia of Database Systems, Springer, 2009, pp. 244-248.

[23] O. Rübel, A. Shoshani, A. Sim, K. Stockinger, G. Weber, W. M. Zhang, Prabhat, “FastBit: interactively

searching massive data,” J. of Physics: Conference Series, vol. 180, 12053, 2009.

[24] C. D. A. Ciferri, F. F. Fonseca, “Materialized Views in Data Warehousing Environments,” SCCC, pp. 3-12,

2001.

[25] G. Canahuate, “Update Conscious Bitmap Indexes,” in Enhanced Bitmap Indexes for Large Scale Data

Management, The Ohio State University, Dissertation, ch. 7, pp 141-163, 2009.

[26] D. Crockford, JavaScript: The Good Parts. Yahoo Press, 2008.

[27] A. Datta, D. VanderMeer, K. Ramamritham, “Parallel Star Join+DataIndexes: efficient query processing in

data warehouses and OLAP,” IEEE TKDE, vol. 14, pp. 1299-1316, 2002.

[28] A. C. Carniel, T. L. L. Siqueira, “The Bitmap Join Index OLAP Tool,” SBBD Demos, pp. 13-18. 2011.

[29] T. L. L. Siqueira, R. R. Ciferri, M. T. P. Santos, “Projeto, construção e manutenção de data warehouses para

auxiliar o planejamento de políticas públicas de educação,” XVI Jornadas de Jóvenes Investigadores, AUGM,

pp. 1016-1025, 2008.

[30] A. S. Maniatis, “The Case for Mobile OLAP,” Pervasive Information Management PIM ’04, Mar., 2004.

