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Abstract 

Data warehouse and OLAP are core aspects of business intelligence environments, since the 

former store integrated and time-variant data, while the latter enables multidimensional 

queries, visualization and analysis. The bitmap join index has been recognized as an efficient 

mechanism to speed up queries over data warehouses. However, existing OLAP tools does 

not use strictly this index to improve the performance of query processing. In this paper, we 

introduce the BJIn OLAP Tool to efficiently perform OLAP queries over data warehouses, 

such as roll-up, drill-down, slice-and-dice and pivoting, by employing the bitmap join index. 

The BJIn OLAP Tool was implemented and tested through a performance evaluation to assess 

its efficiency and to corroborate the feasibility of adopting the bitmap join index to execute 

OLAP queries. The performance results reported that our BJIn OLAP Tool provided a 

performance gain that ranged from 31% up to 97% if compared to existing solutions 

regarding the query processing. Our tool has proven not only to efficiently process queries, 

but also to process OLAP operations on the server and client sides, for different volumes of 

data and taking into account different operating systems. Besides, it provides a reasonable use 

of the main memory and enables new rows to be appended to bitmap join indices. 
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 1 Introduction 

Business Intelligence solutions (BI) are widely adopted by management sectors of enterprises to aid processing, 

analysis and interpretation of their data, aiming at positively impacting strategy, tactics, and operations [1]. Data 

warehouse (DW) and Online Analytical Processing (OLAP) are core aspects of BI environments [2]. The DW is a 

subject-oriented, integrated, time-variant and non-volatile dimensional database [3], while OLAP provides tools to 

perform multidimensional queries over the DW and to support visualization and analysis of the DW [4]. Combining 

both the DW and OLAP enables a better monitoring of business. Therefore, many OLAP tools have been developed 

to end users visualize and manipulate multidimensional data, such as Oracle BI [5] and Mondrian [6]. 

The multidimensional operations commonly supported by OLAP tools are drill-down, roll-up, slice-and-dice and 

pivoting [1][7]. They force the OLAP tool to challenge performance issues, since costly joins among huge fact and 

dimension tables as well as grouping operations are required together with predicates that filter the results. Aiming 

at reducing the query response time in DW, well-known methods as vertical fragmentation [8], view materialization 

[9][10][11][12] and indices [13][14] were proposed. However, none of the studied OLAP tools has investigated the 



 

 

feasibility of adopting exclusively the bitmap join index [13][15] to improve the query processing performance in 

DW, although this index avoids costly join operations.  

Providing such investigation is one of the contributions of this paper. In addition we introduce the Bitmap Join 

Index OLAP Tool (BJIn OLAP Tool) to efficiently perform drill-down, roll-up, slice-and-dice and pivoting OLAP 

operations, as our main contribution. Our tool has proven to efficiently process these operations both on the server 

and client sides, for different volumes of data and also with portability for different operating systems. In addition, it 

provides a reasonable use of the main memory and enables new rows to be appended to bitmap join indices. 

This paper extends a previous work [16], which was published and presented in CLEI’2011 - XXXVII 

Conferencia Latinoamericana de Informatica, in Quito, Ecuador. Furthermore, this paper extends another previous 

work [17]. We highlight several unpublished subjects addressed in this paper, as follows. We present an extended 

description of the BJIn OLAP Tool that comprises the system architecture, all the available operations (building, 

querying, appending new rows to and dropping bitmap join indices) and some implementation details. Moreover, the 

experimental evaluation discusses novel performance tests concerning the interface (client), the append operation 

and the portability. The remaining of this paper is organized as follows. Section 2 summarizes the technical 

background necessary to comprehend this paper. Section 3 introduces the BJIn OLAP Tool. Section 4 discusses the 

experimental results. Section 5 surveys related work. Finally, Section 6 concludes the paper and addresses future 

work.   

 

 2 Technical Background 

In this section, the technical background necessary to comprehend the paper is summarized. In Section 2.1, data 

warehouse and OLAP concepts, applications and examples are addressed. In Section 2.2, methods to provide an 

efficient query processing over DW are described. Finally, Section 2.3 details how to append new rows. 

 

 2.1 Data warehouse and OLAP 

Fig. 1 shows a star schema representing a retail application, which is derived from the Star Schema Benchmark 

(SSB) [18]. Lineorder is the fact table that measures sales and orders, while Customer, Supplier, Part and Date are 

dimension tables that redundantly store descriptive attributes that categorize the facts. These dimension tables are 

referenced by the fact table through foreign keys. In addition, the dimension tables hold hierarchies that enable data 

aggregation according to different granularity levels, such as (c_region)  (c_nation)  (c_city)  (c_address), 

which is held by the dimension table Customer, and (p_mfgr)  (p_category)  (p_brand1)  (p_partkey) which is 

held by the dimension table Part. Considering the mentioned hierarchy in the dimension table Customer, c_region is 

the highest granularity level, while c_address is the lowest granularity level. According to [11], Q1  Q2 if, and only 

if it is possible to answer Q1 using just the results of Q2, and Q1 ≠ Q2. Therefore, it is possible to find out the revenue 

in a given nation by aggregating the results of the cities inside that nation, for example. Finally, an alternative to the 

star schema is the snowflake schema that normalizes the hierarchies. However, the snowflake schema introduces 

additional costly join operations among dimension tables in order to process queries [19]. 

 

Fig. 1: A star schema for a DW of a retail application [13]. 



 

 

Drill-down and roll-up OLAP operations depend on hierarchies [1]. A drill-down operation decomposes fact data 

to lower levels of a hierarchy, then increasing data details. Inversely, a roll-up operation aggregates fact data to 

upper levels of a hierarchy, then summarizing data [7]. Fig. 2 shows examples of these operations adapted from 

[18], using existing hierarchies held by the dimension tables Customer and Supplier. Considering that the user firstly 

issued the query of Fig. 2a and later issued the query of Fig. 2b, there was a drill-down operation based on both 

(c_nation)  (c_city) and (s_nation)  (s_city). On the other hand, if the user had issued the queries inversely, there 

was a roll-up operation based also on those mentioned hierarchies. The underlined attributes in Fig. 2 highlight these 

operations. 

Both the queries of Fig. 2a and Fig. 2b exemplify the slice-and-dice operation, which consists of applying filters 

to the resulting data [7], such as “c_region = 'ASIA'  AND s_region = 'ASIA' AND d_year >= 1992 AND d_year <= 

1997”, shown in Fig. 2a. Finally, the pivoting operation enables reordering results by switching the axis for columns 

and rows [7]. Fig. 3a shows the results for the query of Fig. 2a, whose column d_year was pivoted to be a row, 

providing the results of Fig. 3b. The representation of results in Fig. 3b is also known as a cross table [6]. 

OLAP tools support OLAP operations that are executed over the DW, such as drill-down, roll-up, slice-and-dice 

and pivoting and enable multidimensional visualization and analysis [1]. Mostly, the data cube is accessed through 

Multidimensional Expressions (MDX) [20]. For instance, Mondrian is an open source OLAP server that comprises 

these features and reports query results on Java Server Pages by rendering the cross table employing JPivot [6] and 

synchronous requests that are sent to the server [21]. In order to enable OLAP operations, Mondrian requires the 

data cube definition in XML format describing the DW schema, e.g. fact and dimension tables, hierarchies and 

measures. The user may execute the Mondrian Schema Workbench and provide the proper inputs to generate the 

XML document containing the description of the DW. Otherwise, the user may execute any XML editor. This file 

ensures the correct access to tables, attributes and hierarchies when executing queries on Mondrian. Regarding 

query execution, the user types the query using MDX accessing the Mondrian interface. The MDX code is translated 

by Mondrian to SQL to access the database management system (DBMS), execute the query and finally retrieve the 

answers. The result set is then rendered in cross tables and charts and presented to the user, and then drill-down, 

roll-up, slice-and-dice and pivoting operations are enabled. Conversely, recent web applications are adopting 

asynchronous requests based on Ajax and JSON (JavaScript Object Notation) [26]. Therefore we decided to adopt 

asynchronous requests to develop the BJIn OLAP Tool. 

 
DRILL-DOWN 

 

SELECT c_nation, s_nation, d_year,  
 sum(lo_revenue) AS revenue  
FROM customer, lineorder, supplier, date  
WHERE lo_custkey = c_custkey  
  AND lo_suppkey = s_suppkey  
  AND lo_orderdate = d_datekey   
  AND c_region = 'ASIA'  AND s_region = 'ASIA'  
  AND d_year >= 1992 AND d_year <= 1997 
GROUP BY c_nation, s_nation, d_year 
ORDER BY d_year ASC, revenue DESC; 

SELECT c_city, s_city, d_year,  
 sum(lo_revenue) AS revenue 
FROM customer, lineorder, supplier, date 
WHERE lo_custkey = c_custkey  
  AND lo_suppkey = s_suppkey   
  AND lo_orderdate = d_datekey   
  AND c_nation = 'JAPAN'  AND s_nation = 'JAPAN'  
  AND d_year >= 1992 AND d_year <= 1997  
GROUP BY c_city, s_city, d_year  
ORDER BY d_year ASC, revenue DESC; 
 

ROLL-UP 

(a) querying the nation granularity (b) querying the city granularity 

Fig. 2:    Roll-up and drill-down operations 

 

c_nation s_nation d_year revenue   c_nation s_nation revenue 

CHINA CHINA 1992 5587028770  

1992 

CHINA CHINA 5587028770 

CHINA CHINA 1993 5241310984  CHINA INDIA 4912422786 

CHINA CHINA 1994 5452596836  CHINA INDONESIA 5259493502 

CHINA CHINA 1995 5335157374  CHINA JAPAN 5040640767 

CHINA CHINA 1996 5436388668  CHINA VIETNAM 4437447402 

CHINA CHINA 1997 5281192823  INDIA CHINA 4698961607 

CHINA INDIA 1992 4912422786  INDIA INDIA 4156866160 

… … … …  … … … … 

(a) query results  (b) cross table with column d_year pivoted 

Fig. 3: The original query results and the pivoted query results reorganized with year as a row 

 



 

 

 2.2 Improving query processing performance over data warehouses 

The costly method to process a query over a DW is to perform the star-join, by joining all tables of the star schema 

and then perform filters, groupings and sorting. This strategy provides prohibitive query response times, as 

discussed in Section 4. On the other hand, the methods discussed in this section can improve the query processing 

performance over DW, and are employed in the performance evaluation presented in Section 4. 

Some methods store pre-computed data into tables after performing some operations. A vertically fragmented 

view [8] maintains the minimum set of columns of the star schema that are necessary to answer a given query. For 

instance, the table shown in Fig. 4a has the minimum set of columns to provide the answer to the query shown in 

Fig. 2a. Note that all essential joins were computed when composing the view, by issuing Π c_region, s_region, c_nation, 

s_nation, d_year, lo_revenue (Customer   Lineorder  Supplier  Date). Therefore, this view can be stored aiming at 

improving the query processing performance, since joins are avoided and only filters and groupings need to be 

computed to retrieve the query answer.  

On the other hand, materialized views [9][11][12] pre-compute the DW information that can be used to answer 

queries that are frequently issued. A materialized view is built by creating a table to report pre-computed data from a 

fact table that was joined to dimension tables, and whose measures were aggregated. Since a materialized view 

stores pre-computed aggregated data, processing a query avoids joins and groupings, and drastically reduces the 

number of rows then benefiting the filters. For instance Fig. 5a depicts a materialized view created as c_nation, s_nation, 

d_year GSUM(lo_revenue) (Π c_region, s_region, c_nation, s_nation, d_year, lo_revenue (Customer   Lineorder  Supplier  Date) ) to 

efficiently answer the query shown in Fig. 2a. This view can be stored aiming at improving the query processing 

performance, since joins and groupings are avoided, and only filters need to be computed to retrieve the query 

answer. The reduced set of rows benefits the performance of filtering. Finally, both vertically fragmented views and 

materialized views can be applied to OLAP tools to enhance the query processing performance over DW. For 

example, materialized views can be applied to Mondrian, i.e., aggregate tables according to Mondrian’s 

terminology. 

  
(a) a vertically fragmented view (b) the corresponding bitmap join indices 

Fig. 4: Vertically fragmented view and Bitmap join indices 

 

 

  
(a) a materialized view (b) the corresponding bitmap join indices 

Fig. 5: Materialized view and Bitmap join indices 

 

Indices are an alternative to storing pre-computed data. The bitmap index [14] builds one bit-vector to each 

distinct value v of the indexed attribute A. The attribute cardinality, |A|, is the number of distinct values of A and 



 

 

determines the quantity of existing bit-vectors. All bit-vectors have as many bits as the number of rows found in the 

indexed table. If for the i-th record of the table we have that A = v, then the i-th bit of the bit-vector built for value v 

is set to 1. Otherwise, the bit is set to 0. Suppose that the attribute d_year Fig. 3a is indexed by a bitmap index. The 

cardinality |d_year| is 6, resulting in six bit-vectors, each one of them associated to one of the values 1992, 1993, 

1994, 1995, 1996 and 1997. For instance, the bit-vector for d_year=1992 is 1000001, denoting the existence of 

d_year=1992 in the first and seventh rows. The main advantage of processing queries using a bitmap index is the 

CPU efficiency of bitwise operations (i.e. AND, OR, XOR, NOT) [22]. For instance, to query “d_year>=1992 AND 

d_year<=1995”, there are bit-wise OR operations among the bit-vectors for the values involved, i.e., 1000001 OR 

0100000 OR 0010000 OR 0001000. The result, 1111001, excludes the fifth and sixth rows from the result set. High 

cardinality attributes may impair the performance of the bitmap index, but binning, encoding and compression 

techniques minimize these losses [14]. Currently, the FastBit is an efficient open source implementation of the 

bitmap index [23]. 

Besides, a bitmap join index [13] can be created on the attribute B of a dimension table in order to indicate the set 

of rows in the fact table to be joined with a certain value of B. Therefore, each bit determines the rows of the fact 

table where a given value of B exists. As already mentioned, Fig. 4a shows the table obtained from applying  

Π c_region, s_region, c_nation, s_nation, d_year, lo_revenue (Customer   Lineorder   Supplier   Date) on the star schema shown in 

Fig. 1 to answer the query of Fig. 2a. This table is the fact table Lineorder joined with the dimensions Customer, 

Supplier and Date. In Fig. 4b, bitmap join indices were built on attributes c_region, s_region, c_nation, s_nation 

and d_year to improve the performance when processing the query shown in Fig. 2a. As a result, these indices 

indicate the rows of the table shown in Fig. 4a where a given value occurs. For instance, d_year = 1998 occurs in the 

8
th

 and 9
th

 rows of the table shown in Fig. 4a. Joins among huge DW tables are necessary only once to build the 

bitmap join index. After the index is built, the queries can be processed by accessing the index, avoiding costly joins 

among the tables of the DW. Bitmap join indices built over materialized views, as shown in Fig. 5b, are capable of 

processing queries even more efficiently than those built over vertically fragmented views, because the former 

maintain aggregated data (and a reduced data volume) while the latter does not. Although the bitmap join index 

improves the query processing over DW, none of the OLAP tools investigated in Section 5 adopted exclusively this 

index to process OLAP queries such as drill-down, roll-up, slice-and-dice and pivoting. 

 2.3 Appending rows to data warehouses, views and indices 

In this section, issues related to appending rows to vertically fragmented views, materialized views and bitmap join 

indices are discussed [7][19][24][25], since they are essential to understand the append operation developed for the 

BJIn OLAP Tool.  New rows are appended to DW on a regular time cycle, e.g. daily, weekly or monthly. Suppose 

that the three rows shown in Fig. 6 are appended to the DW depicted in Fig. 1. Consider, also, that lo_suppkey=715 

references a supplier located in Brazil (t1), lo_custkey=22851 references a customer located in Japan (t1), and 

lo_orderdate=871 occurred in 1993 (t1 and t3). 

t1 

lo_orderkey lo_linenumber lo_partkey lo_custkey lo_orderdate lo_suppkey lo_revenue … lo_shipmode 

78171831 15 1 22851 871 715 7890  AIR 

 
t2 

c_custkey c_name c_phone c_mktsegment c_address c_city c_nation c_region 

30001 EC7000 +59388112278 AUTOMOBILE EC18930 QUITO ECUADOR AMERICA 

 
t3 

lo_orderkey lo_linenumber lo_partkey lo_custkey lo_orderdate lo_suppkey lo_revenue … lo_shipmode 

78171831 16 1 30001 871 715 92910  RAIL 

Fig. 6: Three rows to be appended to the DW depicted in Fig. 1 

Firstly, the row t1 is inserted in the fact table Lineorder. Considering the vertically fragmented view of Fig. 4a, a 

new row is appended, as {'ASIA', 'AMERICA', 'JAPAN', 'BRAZIL', 1993, 7890}. In Fig. 4b, the bit-vector for 

c_region='AMERICA' has a bit 0 appended, while the bit-vector for c_region='ASIA' has a bit 1 appended, and the 

other attributes’ bit-vectors are similarly modified. As for the materialized view of Fig. 5a, the second row should be 

modified to comprise the value 586026 (i.e. 578136+7890) for the attribute sum(lo_revenue). Finally, no one of the 

bit-vectors in Fig. 5b need to be modified, since any new row was inserted in the corresponding materialized view of 

Fig. 5a. However, if the attribute sum(lo_revenue) was indexed, the bit-vector for value 578136 would be modified 

by replacing a bit 1 by a bit 0 in the second row, i.e. the bit-vector would be modified from 010000000 to 

000000000. In addition, a bit-vector for value 586026 (i.e. 578136+7890) would be created and have a bit 1 in the 



 

 

second row and zeroes in the remaining rows, i.e. 010000000. Clearly, the insertion of t1 in the DW reveals several 

challenges for maintaining vertically fragmented views, bitmap join indices or materialized views, which are 

necessary to speed up the query processing. 

Secondly, the row t2 is inserted in the dimension table Customer and does not affect the vertically fragmented 

view, the bitmap join indices or the materialized views since these are exclusively associated to facts. And thirdly, t3 

is inserted in the fact table Lineorder. As a result, the vertically fragmented view of Fig. 4a has a new row appended, 

as {'AMERICA', 'AMERICA', 'ECUADOR', 'BRAZIL', 1993, 92910}. As for the bitmap join indices shown in Fig. 

4b, it is necessary to: (i) append a bit 1 in the bit-vector for c_region='AMERICA' and append a bit 0 in the bit-

vector for c_region='ASIA'; (ii) append a bit 1 in the bit-vector for s_region='AMERICA' and append a bit 0 in the 

bit-vector for s_region='ASIA'; (iii) build a new bit-vector for c_nation='ECUADOR', with a bit 1 in the last row 

and bits zeroes in the remaining rows; (iv) append a bit 1 in the bit-vector for s_nation='BRAZIL' and append a bit 0 

in the remaining bit-vectors of this attribute; and (v) append a bit 1 in the bit-vector for d_year=1993 and append a 

bit 0 in the remaining bit-vectors of this attribute. As for the materialized view shown in Fig. 5a, a new row 

composed of {'AMERICA', 'AMERICA', 'ECUADOR', 'BRAZIL', 1993, 92910} is appended. If the attribute 

sum(lo_revenue) was indexed, a new bit-vector for value 92910 would be built with a bit 1 in the last row and zeroes 

in the remaining rows. Finally, the bitmap join index on c_nation in Fig. 5b earns a new bit-vector for value 

'ECUADOR', while the other bit-vectors are modified similarly to those from Fig. 4b, as discussed. Clearly, the 

insertion of t2 and t3 in the DW reveals even more challenges for maintaining vertically fragmented views, bitmap 

join indices or materialized views aiming at speeding up the query processing. Particularly, the bitmap join indices 

required the creation of more bit-vectors, since a new customer was inserted in the Customer dimension table. The 

BJIn OLAP Tool supports appending new rows to the DW similarly to the insertion of t1, t2 and t3, as detailed in 

Section 3.3. 

 3 The Bitmap Join Index OLAP Tool 

The architecture of the Bitmap Join Index OLAP Tool (BJIn OLAP Tool) is shown in Fig. 7. The BJIn OLAP Tool 

was developed as an open source OLAP server written in Java that accesses bitmap join indices to speed up the 

OLAP operations drill-down, roll-up, slice-and-dice and pivoting. On the server side, our tool operates both the 

DBMS and the FastBit in order to build the indices, to issue queries over them and to append new rows to them. The 

queries are submitted by the client to the server, and the latter accesses strictly the indices to provide the answer 

rapidly with high performance. On the client side, the user interacts with our tool through Java Server Pages, 

submits queries and analyzes multidimensional data that are rendered on cross tables and charts produced by the 

Open Ajax Toolkit Framework. Whenever a cross table is modified by the user to produce another view, the 

corresponding chart is refreshed and synchronized with the cross table, and vice-versa. Some implemented facilities 

aid users to interact, i.e. the visualization of the data cube as a tree to select attributes to index and highlight and auto 

complete the query string to match the proper syntax. Finally, other utilities manipulate internal files to maintain 

logs, access privileges, configuration parameters, metadata and parsing. 

 

Fig. 7: The architecture of the BJIn OLAP Tool 

 



 

 

Sections 3.1, 3.2, 3.3 and 3.4 describe building, query processing, data appending and drop operations over 

bitmap join indices using the BJIn OLAP Tool, respectively. Section 3.5 details additional features. We encourage 

the reader to access the BJIn OLAP Tool Portal at http://gbd.dc.ufscar.br/bjinolap. 

 3.1 Building the bitmap join indices 

Before using the BJIn OLAP Tool to build bitmap join indices, the user should execute the Mondrian Schema 

Workbench to specify the attributes to be indexed, as well as dimension and fact tables, measures, and hierarchies 

that exist in the DW schema. The Workbench validates these inputs by checking the DW schema, i.e., by accessing 

the DBMS, assuring that the DW was properly described by the user. If the validation is successful, the Workbench 

generates a XML document that stores all the DW schema specification and the attributes to be indexed. The reuse 

of Mondrian Schema Workbench promotes the interoperability between Mondrian OLAP Server and the BJIn 

OLAP Tool, since the produced XML document can be used by both. While Mondrian reads the document to 

compose a data cube, our tool parses it in order to build the bitmap join indices on the specified attributes. However, 

the use of the Mondrian Schema Workbench does not impose a restriction, because another XML editor could be 

employed instead, since the syntax and tags remains the same. 

After specifying all parameters, the user logs in the BJIn OLAP Tool, uploads the corresponding XML document 

and sets or unsets the append flag, which determines if the indices shall support new rows to be appended or not (as 

detailed in Section 3.3). Thereafter, the UML activity diagram shown in Fig. 8 models the whole process of how to 

build bitmap join indices using our tool. Once uploaded, the XML document is parsed by the BJIn OLAP Tool, 

which issues SQL and dump commands on the DBMS in order to compute joins and build a temporary table. This 

table is dumped to a set of CSV files (comma-separated values) that are stored into the BJIn OLAP directory. Then, 

the BJIn OLAP Tool issues ardea and ibis commands to the FastBit. While the former reads CSV files to store data 

into the FastBit binary format, the latter effectively builds the bitmap index and stores it into the directory. Finally, 

the BJIn OLAP Tool records metadata that fully specifies the index, e.g. the names and types of the indexed 

columns, aliases and the available OLAP operations for that index. The log recording starts after the composition of 

SQL and dump commands and finishes after metadata are recorded. The log file is detailed in Section 3.5 and 

maintains a complete description of the building operation. 

 

Fig. 8: Building bitmap join indices using the BJIn OLAP Tool 

For instance, suppose that c_region, s_region, c_nation, s_nation, d_year and lo_revenue from the DW depicted 

in Fig. 1 were specified by the user to be indexed. They involve four different tables to be joined: Customer, 

Lineorder, Date and Supplier. Therefore, the temporary table to be created by the SQL commands is exactly the one 

shown in Fig. 4a. Then, the bitmap join indices are created on the attributes of this temporary table. Note that 

indexing such attributes would enable roll-up or drill-down operations considering that (c_region)  (c_nation). 

However, in order to enable roll-up or drill-down operations along the entire hierarchies (c_region)  (c_nation)  

(c_city)  (c_address) and (s_region)  (s_nation)  (s_city)  (s_address), the user may have firstly specified 

each one of these attributes on Mondrian Schema Workbench. 

http://gbd.dc.ufscar.br/bjinolap


 

 

A relevant remark is that the user can alternatively create bitmap join indices over materialized views, similarly 

to Fig. 5. Considering the activity diagram shown in Fig. 8, in addition to upload the XML document and set or 

unset the append flag, the user may check the option to build indices over the materialized view and then specify the 

attributes to be indexed. To specify these attributes, the user marks them on the BJIn OLAP Tool interface (i.e. the 

Tree Cube View component, shown in Fig. 7). Then, the DBMS builds a temporary table that corresponds to the 

materialized view containing the specified attributes. The creation of the materialized view causes an overhead 

because it requires data aggregation. On the other hand, the index has a reduced data volume and a better 

performance on query processing. 

The BJIn OLAP Tool provides mechanisms to avoid, treat and report errors during the tasks to build bitmap join 

indices. The tool refuses the upload of any invalid XML documents or indices that are homonyms. All attributes 

have internal aliases that avoid ambiguity. Also, our tool limits the data volume to be manipulated by the FastBit, 

avoiding memory leaks. 

 3.2 Query processing 

Whenever the user builds an index, its metadata is recorded and then the index becomes available to be queried. The 

UML activity diagram shown in Fig. 9 models the whole process of how to process queries using our tool. Initially, 

the user chooses the index to be used among all available indices, and types the desired query. The BJIn OLAP Tool 

parses the query and writes the proper ibis command containing the query and the chosen index, and submits it to 

the FastBit. Then, the FastBit accesses the index and processes the query. After processing the query, the FastBit 

writes a CSV file containing the query results. The BJIn OLAP Tool reads this CSV file to build the cross table and 

render it on Java Server Pages, which are displayed to the user. Additionally, charts are displayed to depict the same 

results of the cross table. 

 

Fig. 9: Issuing queries to be processed by the BJIn OLAP Tool 

After a query execution, rather than typing another query the user is able to perform OLAP operations as follows. 

Once the results were displayed, the pivoting operation is allowed. All the user needs to do is to drag and drop 

columns or rows to switch the axis of the cross table. This operation is computed on the client side, and therefore 

was not shown in Fig. 9. Drill-down and roll-up operations are also allowed for the user if the requested attributes 

were indexed and if there is at least one hierarchy involved in the previous query. For instance, if the previous query 

involves the s_nation attribute, a combo-box will enable the attribute s_region for the roll-up operation, and the 

attributes s_city and s_address for the drill-down operation. The user then selects the operation and the attributes of 

interest in the combo-box. Furthermore, roll-up and drill-down operations are executed on the server side, and 

correspond to issuing a new query. However, since results of the previous query were cached by the server and 



 

 

contain partial results of the new query, the performance is benefited. Every OLAP operation that the user applies to 

a cross table is also applied to synchronize the corresponding chart. 

The query language used to compose queries is already defined by the FastBit and does not require joins or 

grouping clauses. The columns listed in the SELECT clause are used to aggregate results. Therefore, writing the 

query is a straightforward task for the user, since only SELECT-WHERE clauses need to be written. Furthermore, 

the slice-and-dice operation can be described as restrictions in the WHERE clause. 

For instance, suppose that attributes c_region, s_region, c_nation, d_year and lo_revenue were indexed and that 

the user issues the query “SELECT c_nation, s_nation, d_year, sum(lo_revenue) WHERE AND c_region = 'ASIA'  

AND s_region = 'ASIA' AND d_year >= 1992 AND d_year <= 1997”. The FROM clause is not necessary because 

the user had already selected the index to be queried. The WHERE clause has filters that define the slice-and-dice 

OLAP operation. To submit a roll-up operation on c_nation, instead of typing another query, the user should simply 

select the attribute s_nation in the combo-box. To perform a pivoting operation and switch the column d_year to a 

row, the user should simply drag and drop this item. The results of these operations are automatically applied to the 

chart that depicts the corresponding cross table. 

The BJIn OLAP Tool provides mechanisms to avoid, treat and report errors during the tasks to process queries 

over bitmap join indices. Since the building and the data appending operations of bitmap join indices often spend 

several seconds (as discussed in Section 4), our tool does not enable queries over indices that are currently being 

built or having new rows appended. Besides, the tool refuses to issue queries that are syntactically wrong or that 

refer to attributes that are not indexed by the selected index. Ambiguity is avoided to issue and process queries, 

since all attributes have internal aliases. Moreover, any runtime error during the query execution is reported to the 

user. The log recording starts after parsing the query and finishes after displaying cross tables and charts. Finally, 

the OLAP operations of drill-down, roll-up, slice-and-dice and pivoting are enabled only for attributes that were 

previously indexed and whose hierarchies were associated to the previous query. 

 3.3 Appending new rows to bitmap join indices 

In the BJIn OLAP Tool, the existing bitmap join indices support new rows to be appended if the user had set the 

append flag before building the indices (see Section 3.1 and Fig. 8). The UML activity diagram shown in Fig. 10 

models the whole process of how to append new rows to existing bitmap join indices using the BJIn OLAP Tool. 

Firstly, the user provides the name of the index that wishes to append new rows to. Then, our tool reads the metadata 

of the specified index and then issues SQL and dump commands on the DBMS. A temporary table whose rows must 

be appended to the indices is accessed, and its rows are dumped in CSV files. After dumping data, all the rows of 

the temporary table are deleted. Then, the BJIn OLAP Tool composes ardea and ibis commands and issues them on 

FastBit using the cited CSV files to append the new rows and possibly create new bit-vectors. Finally, our tool 

updates the metadata file with the timestamp of the last row appended. The log recording starts after composing 

SQL and dump commands and finishes after recording the metadata. 

In detail, whenever the user sets the append flag before building the indices, the BJIn OLAP Tool automatically 

creates two main components: 

 a temporary table with the same attributes of the indices; and 

 a trigger that monitors if new rows are being appended to the fact table of the DW. 

The temporary table remains stored as long as the corresponding indices exist (see more details in Section 3.4). 

Rows are inserted into this table whenever the trigger detects an insertion into the fact table, similarly to the rows t1 

and t3 exemplified in Fig. 6. The trigger maps the foreign key values of each appended row to the corresponding 

values of attributes that were indexed. Also, the trigger inserts the mapped appended rows in the temporary table. 

This table then contains the set of rows to be appended to the bitmap join indices. The trigger has a sequence of 

tasks to be performed, independently of the DW schema. These tasks are detailed in Algorithm 1, whose parameters 

and local variables are described in Table 1. 

Initially, the record to be inserted in the temporary table is empty (line 1). There is a loop to assure the processing 

of the following tasks for every row inserted in the fact table (lines 2 to 19). For each attribute of the inserted row, 

the values are mapped to the values that will be appended to the index (lines 3 to 14). Attributes that have foreign 

keys referencing the dimension tables (lines 4 to 12) are distinguished from those attributes that denote measures 

(line 13). Finally, the record with mapped values is inserted in the temporary table (lines 15 to 18). 

To map the values of the attributes that reference the dimension tables through foreign keys (e.g. lo_custkey in 

Fig. 1) to adequate values of the indexed attributes (e.g. c_region and c_nation in Fig. 1), each dimension table must 

be read (line 4). If one of the dimension tables store the given attribute (e.g. Customer), then it is necessary to 

compose the set of indexed attributes C (line 6). This set indicates all attributes in a given dimension table that also 

exist in the temporary table. For instance, if Customer is the dimension table and temp has the attributes of Fig. 4a, 

then C is assigned to {c_region, s_region, c_nation, s_nation, d_year, lo_revenue}  {c_custkey, c_name, 



 

 

c_phone, c_mktsegment, c_address, c_city, c_nation, c_region} and therefore C = {c_nation, c_region}. Then, for 

each element of C, the value for that attribute is fetched in the dimension table and added to the record that 

maintains mapped values (lines 7 to 10). For example, if the row t1 of Fig. 6 was inserted in the fact table, the values 

'JAPAN' and 'ASIA' would be added to the record, since SELECT c_nation FROM Customer WHERE c_custkey = 

22851 and c_region FROM Customer WHERE c_custkey = 22851 would be executed. After executing these steps 

for all dimension tables, the record would contain {'ASIA', 'AMERICA', 'JAPAN', 'BRAZIL', 1993}.  

 

Fig. 10: Appending new rows to bitmap join indices with the BJIn OLAP Tool 

Algorithm 1 

BitmapJoinIndexAppendRowsTrigger ( F, T, ti, aj, D, dk, M,temp ) 

Output: The temporary table containing data to be appended to the bitmap join indices. 

Declarations: record, value, C, NEW 

01 record ← NULL 

02 for each ti in T 

03    for each aj in ti 

04       for each dk in D 

05          if aj  dk then  

06             C ← temp.getColumns()  dk.getColumns() 

07             for each cm in C 

08                value ← execute_dbms(SELECT cm FROM dk WHERE dk.pk = ti.aj) 

09                record.add(value) 

10             end-for 

11          end-if 

12       end-for 

13       if aj  M then record.add(NEW.aj) 

14    end-for 

15    if record is not null then  

16       execute_dbms(INSERT INTO temp VALUES record.getValues()) 

17       record ← NULL 

18    end-if 

19 end-for 

Further, the values for the attributes that denote measures are added to the record (line 13). In the previous 

example, the value for lo_revenue is added to the record, resulting in {'ASIA', 'AMERICA', 'JAPAN', 'BRAZIL', 

1993, 7890}. As a result, the record store the mapped values. Finally, the insertion is performed in the temporary 

table using the mapped values from the record (lines 15 to 18), for example INSERT INTO temp VALUES ('ASIA', 

'AMERICA', 'JAPAN', 'BRAZIL', 1993, 7890). An important detail is to empty the record before processing another 



 

 

row (line 17). Note that the BJIn OLAP Tool has a strict control over attributes that are homonyms, avoiding the 

ambiguity that could occur if attributes in distinct dimension tables had the same name (in line 5). One important 

remark is that Algorithm 1 supports only star schemas. To provide support for a snowflake schema, the BJIn OLAP 

Tool modifies line 8 to join the normalized tables and then fetch the attribute cm. These tables are held by the set of 

dimension tables D. 

Table 1: Parameters and local variables of Algorithm 1 

Parameter or local variable Description 

F the DW’s fact table 

T the set of rows that are being inserted in the fact table F 

ti a row from T 

aj an attribute from ti 

D the set of dimension tables 

dk a dimension table from D 

M the set of measures in F 

temp the temporary table 

record a record of type temp 

value a value extracted from a given attribute 

C a set of attributes 

NEW the row that is being appended to F 

Regarding the data appending to bitmap join indices using the BJIn OLAP Tool, we finally emphasize that: 

 The append operation comprises the creation of new bit-vectors if necessary, similarly to the insertion of 

rows t1 and t3 in the fact table Lineorder, according to Fig. 6. 

 Insertions in the fact table that are denied by the DBMS because they violate integrity or referential 

constraints are not considered by the BJIn OLAP Tool to append rows to the bitmap join indices. 

 The replacement of values, similar to an UPDATE command of the SQL, is not supported. As exemplified 

in Section 2.2, this is the case for the bitmap join index built on the attribute sum(lo_revenue) of Fig. 5a 

and the subsequent insertion of  the row t1 into Lineorder, according to Fig. 6. 

 If bitmap join indices created over a materialized view requires the replacement of values, firstly the 

materialized view and later the bitmap join indices are rebuilt. 

 The append operation is not automatic and requires the user intention because, similarly to a DW, this 

operation should be executed in batch and during a time window when the indices are unavailable to users. 

 3.4 Dropping the bitmap join indices 

The UML activity diagram shown in Fig. 11 describes how to drop bitmap join indices using the BJIn OLAP Tool. 

Firstly, the user selects the index to be dropped and confirms the choice, because this operation is permanent and 

cannot be undone. Then, our tool checks if the user had set the append flag before building the index. If so, the 

DBMS is accessed and drops the corresponding temporary table and trigger. The files and directories concerning the 

index chosen are removed from the file system. The BJIn OLAP Tool provides mechanisms to avoid, treat and 

report errors during the tasks to drop bitmap join indices as follows. Only indices whose append flag were set 

require an access to the database. Besides, the metadata that describe the indices (Section 3.1) and the internal 

aliases for indices and their attributes avoid the deletion of indices that were not specified by the user. 

 3.5 Additional features 

The operations involving bitmap join indices described in sections 3.1 to 3.4 require a previous authentication, i.e., 

the BJIn OLAP Tool only enables these operations if the user was previously identified and logged in. The 

privileges available to users are: canUploadXml to allow XML files to be uploaded by the user; canCreateIndex to 

allow the user to build indices; canAppendRows to allow indices to have new rows appended; canDropIndex to 

allow indices to be dropped by a given user; and isSuperUser to determine if the user is a superuser and therefore 

has no restrictions. 

In order to configure the BJIn OLAP Tool to run properly in a given operating system, the user sets the 

parameters in the configuration file config.properties. The properties required are: ibisPath to indicate the directory 

where the ibis application was installed by the FastBit; ardeaPath to indicate the directory where the ardea 

application was installed by the FastBit; url to detail the Java Database Connection (JDBC) values; driver to specify 



 

 

the JDBC class; and bjinolapPath to indicate the directory where the BJIn OLAP Tool will manipulate folders and 

files associated to the bitmap join indices. 

Another relevant feature implemented in the BJIn OLAP Tool is the log, which records every command issued by 

the tool, e.g. DBMS and operating system commands. All the described operations detailed in the previous sections 

have their specific logs. Every runtime error is recorded. As a result, the log benefits debugging the software. This 

feature was implemented using the log4j library (http://logging.apache.org). 

Currently, our tool is compatible to the operating systems Windows and Linux, to the DBMSs PostgreSQL, 

MySQL and IBM DB2®, and to the browsers Opera, Chrome, Firefox, IE8 and IE9. Regarding the Java Virtual 

Machine, its version 7 is compatible. 

 

 

Fig. 11: Dropping bitmap join indices with the BJIn OLAP Tool 

 4 Experimental Evaluation 

This section presents the experimental evaluation of the BJIn OLAP Tool, which was done by running performance 

tests. The results point out the remarkable performance of the BJIn OLAP Tool to process the following OLAP 

operations: drill-down, roll-up and slice-and-dice. We investigate the performance of our tool against the current 

technology of DBMS and against the Mondrian OLAP Server. Since the pivoting OLAP operation is performed on 

the client side, it was not evaluated in our tests. 

In section 4.1 we detail the experimental setup used to execute the tests. The first test, in Section 4.2, compares 

the slice-and-dice query processing performance for the BJIn OLAP Tool, vertically fragmented views stored by the 

DBMS and Mondrian OLAP Server. Furthermore, storage requirements and attributes’ cardinalities are addressed. 

In Section 4.3 we focus on the drill-down and roll-up query processing performance. Section 4.4 describes the 

results regarding a more voluminous DW and the use of materialized views and bitmap join indices built over these 

views. In Section 4.5, the performance of rendering interface components on the client side is assessed. Section 4.6 

details the memory usage, while Section 4.7 evaluates the query processing performance and the portability issues. 

Finally, Section 4.8 focuses the cost of appending new rows to bitmap join indices using the BJIn OLAP Tool. 

 

 4.1 Experimental setup 

Regarding the datasets, we used the Star Schema Benchmark (SSB) [18] to create two star schemas identical to that 

in Fig. 1. The DW1 dataset was loaded according to the SSB scale factor 1 and produced 6 million rows in the fact 

table, while the DW10 dataset was loaded with scale factor 10 and therefore was 10 times more voluminous than 

DW1. Both of them held attribute hierarchies such as (s_region)  (s_nation)  (s_city)  (s_address) and 

(c_region)  (c_nation)  (c_city)  (c_address), then enabling the experimental evaluation of drill-down and roll-

up operations. The DBMS automatically created B-trees to index the attributes that composed the primary keys of 

each table in DW1 and DW10 datasets. We did not create any additional indices. 

The workload was composed of SSB’s queries, which are organized in four groups of queries Q1, Q2, Q3 and Q4 

and have increasing complexity [18]. Each group of query determines an intrinsic number of joins and filters, as 

well as groupings and sorting. Fig. 12 illustrates each query group template. These templates are described in terms 

of the operations that are computed to execute their queries in Table 2. Since the queries have filters in the WHERE 

clause, they enable slice-and-dice operations. The drill-down and roll-up operations were evaluated following the 

SSB’s queries Q3.1, Q3.2, Q3.3 and Q3.4. Executing them progressively determines a drill-down operation, while 

the inverse execution consists of a roll-up operation.  These queries are shown in Fig. 13, and the attributes used for 

drill-down and roll-up operations are highlighted in bold. 

Other datasets were created as vertically fragmented views and materialized views, similarly to those of Section 

2.2. Their descriptions are provided in the next sections. In addition to low cardinality attributes, all queries involve 

http://logging.apache.org/


 

 

at least one high cardinality attribute. For instance, lo_revenue attribute has a cardinality of 3,345,588 in the DW1 

dataset, and a cardinality of 5,841,774 in the DW10 dataset. These attributes were used aiming at assessing our tool 

when dealing with high cardinality. 
 

Q1 
SELECT SUM(lo_extendedprice*lo_discount) AS revenue  
FROM Lineorder, Date  
WHERE lo_orderdate = d_datekey  
  AND d_year = [YEAR]   
  AND lo_discount BETWEEN  [DISCOUNT] - 1  
           AND [DISCOUNT] + 1 
  AND lo_quantity < [QUANTITY]; 

Q2 
SELECT SUM(lo_revenue), d_year, p_brand1 
FROM Lineorder, Date, Part, Supplier 
WHERE lo_orderdate = d_datekey 
  AND lo_partkey = p_partkey 
  AND lo_suppkey = s_suppkey 
  AND p_category = 'MFGR#12' 
  AND s_region = 'AMERICA'  
  GROUP BY d_year, p_brand1 
  ORDER BY d_year, p_brand1; 

  

Q3 
SELECT c_nation, s_nation, d_year,  
          SUM(lo_revenue) AS revenue  
FROM Customer, Lineorder, Supplier, Date  
WHERE lo_custkey = c_custkey 
  AND lo_suppkey = s_suppkey 
  AND lo_orderdate =  d_datekey  
  AND c_region = 'ASIA' 
  AND s_region = 'ASIA'  
  AND d_year >= 1992 AND d_year <= 1997  
GROUP BY c_nation, s_nation, d_year 
ORDER BY d_year asc, revenue DESC; 

Q4 
SELECT d_year, c_nation, 
   SUM(lo_revenue - lo_supplycost) AS profit  
FROM Date, Customer, Supplier, Part, Lineorder  
WHERE lo_custkey = c_custkey 
   AND lo_suppkey = s_suppkey 
  AND lo_partkey =  p_partkey 
  AND lo_orderdate = d_datekey 
  AND c_region = 'AMERICA'   
  AND s_region = 'AMERICA' 
  AND (p_mfgr = 'MFGR#1' OR p_mfgr = 'MFGR#2')  
GROUP BY d_year, c_nation 
ORDER BY d_year, c_nation; 

Fig. 12: The templates for the SSB’s queries [18]. 

Table 2: Description of the queries templates in Fig. 12 

Query Group Joins Filters Aggregation? Sorting? Attributes to be indexed 

Q1 1 3 No No 4 

Q2 3 2 Yes Yes 5 

Q3 3 3 Yes Yes 7 

Q4 4 3 Yes Yes 7 

 

Q3.1 
SELECT c_nation, s_nation, d_year, sum(lo_revenue) AS revenue  
FROM customer, lineorder, supplier, date  
WHERE lo_custkey = c_custkey  
 AND lo_suppkey = s_suppkey  
  AND lo_orderdate = d_datekey   
  AND c_region = 'ASIA'  AND s_region = 'ASIA'  
  AND d_year >= 1992 AND d_year <= 1997 
GROUP BY c_nation, s_nation, d_year 
ORDER BY d_year ASC, revenue DESC; 

Q3.2 
SELECT c_city, s_city, d_year, sum(lo_revenue) AS revenue 
FROM customer, lineorder, supplier, date 
WHERE lo_custkey = c_custkey  
  AND lo_suppkey = s_suppkey   
  AND lo_orderdate = d_datekey   
  AND c_nation = 'JAPAN'  AND s_nation = 'JAPAN'  
  AND d_year >= 1992 AND d_year <= 1997  
GROUP BY c_city, s_city, d_year  
ORDER BY d_year ASC, revenue DESC; 

  

Q3.3 
SELECT c_city, s_city, d_year, sum(lo_revenue) AS revenue  
FROM customer, lineorder, supplier, date  
WHERE lo_custkey = c_custkey  
AND lo_suppkey = s_suppkey   
AND lo_orderdate = d_datekey   
AND (c_city = 'JAPAN    1' OR c_city = 'JAPAN    5')  
AND (s_city = 'JAPAN    1' OR s_city = 'JAPAN    5')  
AND d_year >= 1992 and d_year <= 1997  
GROUP BY c_city, s_city, d_year  
ORDER BY d_year ASC, revenue DESC; 

Q3.4 
SELECT c_city, s_city, d_year, sum(lo_revenue) AS revenue  
FROM customer, lineorder, supplier, date  
WHERE lo_custkey = c_custkey  
AND lo_suppkey = s_suppkey  
AND lo_orderdate = d_datekey  
AND (c_city = 'JAPAN    1' OR c_city = 'JAPAN    5')  
AND (s_city = 'JAPAN    1' OR s_city = 'JAPAN    5')  
AND d_yearmonth = 'Dec1997'  
GROUP BY c_city, s_city, d_year  
ORDER BY d_year asc, revenue DESC; 

Fig. 13: Adapted queries to evaluate drill-down and roll-up operations 



 

 

The hardware and software platforms used are described as follows.  

 Platform P1 was a computer with an Intel® Core™ 2 Duo processor with frequency of 2.80GHz, 320 GB 

SATA hard drive with 7200 RPM, and 3 GB of main memory. The operating system was CentOS 5.4 with 

Kernel Version 2.6.18-164.el5, and the following softwares were installed: FastBit 1.2.2, PostgreSQL 8.4, 

JDK 1.6.0_21 and Apache Tomcat 6.0.29; and 

 Platform P2 comprised a computer with an Intel® Core™ i5 processor with frequency of 2.66GHz, 640 GB 

SATA hard drive with 7200 RPM, 4 GB of main memory, Ubuntu 10.10 with Kernel 2.6.35-27, FastBit 

1.2.4, PostgreSQL 9.0, JDK 1.6.0_24 and Apache Tomcat 7.0.14. 

Two distinct platforms were utilized due to the costly operations involved. Both P1 and P2 platforms had Open 

Ajax Toolkit 2.8, Mondrian Schema Workbench 3.2.0 and Mondrian OLAP Server 3.2.1.13885 installed. Finally, all 

bitmap join indices were built with WAH compression algorithm, equality encoding and no binning. These features 

are enabled by the FastBit by default to improve Bitmap indices over high cardinality attributes [14]. 

 

 4.2 Comparing the BJIn OLAP Tool to vertically fragmented views 

These experiments were conducted in platform P1 and considered the following configurations to execute queries: 

 SJ used the DBMS to compute the star-join on the DW1 dataset;  

 VFM used the DBMS to avoid joins by accessing a specific vertically fragmented view that was previously 

built over the DW1 dataset;  

 BJIn OLAP Tool avoided joins by accessing bitmap join indices that were previously built over the DW1 

dataset; and 

 Mondrian OLAP Server to access the DW1 dataset using MDX. 

Note that the VFM configuration demanded the creation of one vertically fragmented view for each SSB query, 

similarly to that view of Section 2.2. We performed all tests locally to avoid network latency. All SSB’s queries 

were issued, and the system cache was flushed after the execution of each query. We gathered the elapsed time in 

seconds to process each query. The results were reported in Fig. 14. 

Clearly, the BJIn OLAP Tool outperformed all the other configurations, corroborating the use of the bitmap join 

index to process OLAP queries. On the other hand, the Mondrian configuration was the one that mostly impaired the 

query processing performance. In fact, OLAP servers often access the star schema maintained by the DBMS in 

order to perform the queries, mapping MDX to SQL queries. Therefore, as the Mondrian configuration accessed 

DW1 just as the SJ configuration did, it was already expected that they would obtain similar results. Furthermore, 

there was an overhead that differed Mondrian and SJ configurations, since only the former needed to prepare Java 

Server Pages and render cross tables to show to the user. Both the SJ and the Mondrian configurations provided 

unacceptable query response times. 

 

Fig. 14: Elapsed time obtained by each configuration to process SSB’s queries 

Moreover, the VFM configuration overcame the SJ configuration since the former avoids joins. The exceptions 

were queries Q4.1 and Q4.2, where the VFM configuration performed a sequential scan on the text attribute p_mfgr 



 

 

introducing an overhead. However, the improvement provided by the VFM configuration was smaller than the 

improvement achieved by our tool to process queries. Actually, the time reduction imposed by the BJIn OLAP Tool 

over vertically fragmented views ranged from 33% in Q3.3 up to 84% in Q2.2. The time reduction is a percentage 

that determines how much more efficient one configuration was than other configuration. Note that, as every query 

of the workload had restrictions in the WHERE clause, the results corroborated the use of the bitmap join index in 

OLAP tools to improve the performance of the slice-and-dice operation. 

The attribute’s cardinality is a very important issue whenever dealing with bitmap indices, since it determines the 

quantity of bit-vectors built for the corresponding attribute. Fig. 15 illustrates, for the indices built for each query, 

the quantity of bit-vectors available, i.e. the sum of the cardinalities of all indexed attributes. Only the indices of 

group Q1 have less than 3 million bit-vectors. According to our assessments, every query execution accessed more 

than 99% of the available bit-vectors. Therefore, the results revealed that the BJIn OLAP Tool efficiently performed 

queries even for very high cardinalities and accessing a huge number of bit-vectors. 

The construction of the bitmap join indices spent 1,896 seconds, while the vertically fragmented views accessed 

by the DBMS spent 6,225 seconds to be built. Regarding storage, Fig. 16 shows individual requirements for both 

vertically fragmented views (VFM) and bitmap join indices that were build to process each SSB query. Naturally, as 

more bit-vectors need to be built (Fig. 15), more storage space is required (Fig. 16). As a result, VFMs and bitmap 

join indices that were built for group Q1 required less storage space than other groups. Also, for group Q1, the 

bitmap join indices occupied less space than vertically fragmented views.  

 

Fig. 15: Quantity of bit-vectors available for the index of each query 

 

 
Fig. 16: Storage requirements for both the vertically fragmented views and the bitmap join indices 

On the other hand, considering groups Q2, Q3 and Q4, indices required more storage space than views. Although 

the cardinalities of the attributes in groups Q2, Q3 and Q4 were similar (Fig. 15), the storage requirements varied 

according to each query as shown in Fig. 16. This difference is due to the existence of attributes of distinct data 



 

 

types (and sizes in bytes) in each query. For instance, although queries Q2.1 and Q4.2 had bitmap join indices with 

similar cardinalities built (Fig. 15), their indices occupied distinct amount of storage space (Fig. 16). Finally, the 

DW1 dataset occupied 838 MB, the created vertical fragmented views occupied a sum of 5,193 MB, and the bitmap 

join indices occupied a sum of 5,652 MB. Compared to vertically fragmented views, bitmap join indices required 

8.8% more disk space. However, these indices have reasonably improved the query processing performance and 

spent less time to be built. 

 4.3 Drill-down and roll-up operations 

In this test we evaluated drill-down and roll-up operations using platform P1 and the following test configurations:  

 BJIn OLAP Tool avoided joins by accessing bitmap join indices built over the DW1 dataset, comprising the 

attributes d_year, d_yearmonth, s_region, s_nation, s_city, c_region, c_nation, c_city and lo_revenue; and 

 Mondrian OLAP Server to access the DW1 dataset using MDX. 

We executed the queries shown in Fig. 13 consecutively without flushing the system cache between each query. 

This strategy allows the cache to be used and therefore to rapidly fetch partial results of the query. We performed 

both the drill-down and roll-up operations five times, gathered the elapsed time of each specific query and later 

calculated the average. Also, we calculated the total elapsed time of each OLAP operation and the time reduction 

provided by the BJIn OLAP Tool over Mondrian.  

The results were reported in Table 3, and revealed that the first query, i.e. the query Q3.1, was the costly query of 

the drill-down operation. This fact confirmed the importance of the cache whenever performing this OLAP 

operation, in order to rapidly fetch partial query results, and then provide a shorter elapsed time to process the 

subsequent queries. An important result derived from our experiments is that the BJIn OLAP Tool greatly 

outperformed the Mondrian configuration to execute the first query of both drill-down and roll-up operations, i.e. 

Q3.1 and Q3.4, respectively. 

The experiments had also shown that the BJIn OLAP Tool drastically decreased the query response time to 

process drill-down and roll-up operations. Actually, our tool provided a time reduction of at least 45% over 

Mondrian. This fact corroborated the use of the bitmap join index in OLAP tools in order to improve the query 

processing performance of drill-down and roll-up operations. 

Table 3: Drill-down and roll-up operations performed by Mondrian and the BJIn OLAP Tool 

 Drill-down (s): Q3.1 down to Q3.4 Roll-up (s): Q3.4 up to Q3.1 

Query Mondrian BJIn OLAP Tool Mondrian BJIn OLAP Tool 

Q3.1 226.553 73.835 4.356 50.067 

Q3.2 3.738 52.651 3.390 5.482 

Q3.3 0.239 0.648 2.875 29.708 

Q3.4 2.866 0.411 231.313 45.403 

Total 233.396 127.545 241.934 130.660 

Time Reduction (%) 45.35% 45.99% 

 4.4 Increasing Data Volume and Accessing Materialized Views 

In order to assess our BJIn OLAP Tool for its efficiency and scalability, we performed experiments with a greater 

data volume (DW10) than those used in sections 4.2 and 4.3 (DW1), and the same platform P1. Besides, in this 

section we state four new configurations as follows: 

 DBMS+MV  was the DBMS avoiding joins by accessing specific materialized views that were built to 

process each one of the SSB’s queries over the DW10 dataset (similarly to the view shown in Fig. 5a);  

 Mondrian+MV was the Mondrian OLAP Server accessing the previously cited materialized views using 

MDX and Aggregate Tables;  

 FastBit used the FastBit to avoid joins by accessing bitmap join indices that were previously built over the 

cited materialized views (similarly to Fig. 5b); and  

 BJIn OLAP Tool to avoid joins by accessing the previously mentioned bitmap join indices. 

Although the DW10 had a greater volume, materialized views drastically reduced the quantity of rows. We 

performed all tests locally to avoid network latency. This test also compared the performance of the OLAP tool and 

its query engine, aiming to estimate the overhead, i.e. the difference between the time spent by the OLAP tool and 

the time spent by the query engine. While the query engine of Mondrian is the DBMS, the query engine of the BJIn 

OLAP Tool is the FastBit. All queries of the SSB were issued, and the system cache was flushed after the execution 

of each query. We gathered the elapsed time in seconds to process each query. The results were reported in Fig. 17. 

The results revealed that the BJIn OLAP Tool outperformed the Mondrian configuration in every query. 

Concerning the engines, the FastBit outperformed the DBMS in most queries, except for group Q1, which has a very 



 

 

low volume (less than 100 rows). Actually, the time reduction imposed by the BJIn OLAP Tool over the Mondrian 

configuration ranged from 71% in Q1.2 up to 97% in Q3.4. Therefore, our tool demonstrated to be feasible when 

indexing materialized views and processing queries using these indices. 

 
Fig. 17: Elapsed time to process SSB’s queries on DW10 dataset, in logarithmic scale (base 10) 

 

Another interesting result showed that the BJIn OLAP Tool was capable of displaying the query results much 

more rapidly than the Mondrian configuration. Fig. 18 shows how many seconds of overhead each OLAP tool added 

to the elapsed time spent by the query engine to process each query. In other words, it represents the difference 

between the OLAP tool elapsed time and the engine elapsed time, derived from Fig. 17. Although the DBMS 

provides the query answer quickly, there is an overhead that severely impaired the Mondrian configuration 

performance to cache the data cube, translate MDX and render the results. This overhead ranged from 11 seconds 

(Q1.2) to 83 seconds (Q4.1). This severe overhead was not observed on the BJIn OLAP Tool, which introduced only 

a few seconds to the FastBit elapsed time, i.e. at most 3 seconds (Q2.2). 

Regarding storage, the DW10 dataset occupied 10,540 MB, all bitmap join indices required 51 MB and all 

materialized views required 45.6 MB. The construction of the materialized views by the DBMS spent 174,416 

seconds, while the indices spent 163 seconds to be built over these views. Although the indices added approximately 

12% of storage requirements to materialized views, they greatly improved the query processing performance over 

the DW10 dataset. Also, the time to build the indices over the materialized views added only 0.00094% to the 

elapsed time to build these views. 

 

 
Fig. 18: The overhead tool added to the elapsed time spent by the query engine 

 4.5 Rendering interface components on the client side to present the query results 

In this section we evaluate the time spent by OLAP tools to render the interface components and present the 

query results to the user. Differently from the previous and remaining sections, this test assesses the performance on 

the client side. This evaluation was motivated by the fact that OLAP tools added significant overheads to the query 



 

 

processing elapsed times of their corresponding query engines, as discussed in Section 4.5. We measured how much 

time Mondrian and the BJIn OLAP Tool spent to load the entire Java Server Page, starting at the moment when the 

first byte transferred from the server became available, and finishing when the page became completely loaded on 

the client’s Internet browser. We decided to use the queries of group Q3 (Fig. 13) because they were the most costly 

according to the results of sections 4.1 to 4.4. Table 4 describes how many rows and columns composed the cross 

table to display the results of each query regarding the DW1 and DW10 datasets. Note that these datasets have 

different data volumes as they were generated according to SSB’s scale factors 1 and 10, respectively. As a result, 

the quantity of rows for the DW1 and the DW10 datasets are not the same in Table 4. All tests were executed in 

platform P2 due to the complexity of the involved operations. We utilized the Mozilla Firefox 3.6.15 as Internet 

browser and gathered the elapsed time to load the pages with the utility FireBug 1.7.3. 

Table 4: Rows and columns that compose the cross table showing the queries’ results 

 Q3.1 Q3.2 Q3.3 Q3.4 

Columns 
c_nation, s_nation, 

d_year, sum(lo_revenue) 

c_city, s_city, d_year, 

sum(lo_revenue) 

c_city, s_city, d_year, 

sum(lo_revenue) 

c_city, s_city, d_year, 

sum(lo_revenue) 

Rows DW1 150 596 24 3 

Rows  DW10 150 600 24 4 

Firstly, we issued five times the queries of group Q3 over the DW1 dataset, gathered the elapsed time to load 

the page, and then calculated the average. The system cache was flushed between each query execution. We 

evaluated the following configurations: 

 Mondrian+SJ accessed the DW1 dataset using MDX; and 

 BJIn OLAP Tool avoided joins by accessing bitmap join indices built for each query of group Q3. 

The results are shown in Fig. 19a. They revealed that the BJIn OLAP Tool was three to five times more efficient 

than Mondrian to present the query results for the client on the Internet browser, considering Q3.1 and Q3.2, 

respectively. In addition, the BJIn OLAP Tool spent the shorter time to render the larger cross table, i.e., for Q3.2. 

Secondly, we rerun the experiment over the DW10 dataset and evaluated the following configurations: 

 Mondrian+MV accessed specific materialized views that were built to process each one of the four Q3 

queries; and 

 BJIn OLAP Tool+MV avoided joins by accessing bitmap join indices built over the mentioned materialized 

views. 

The results are shown in Fig. 19b and revealed that rendering the results of queries over a more voluminous DW 

did not impair the performance of both the BJIn OLAP Tool and Mondrian, if compared to the results of Fig. 19a. 

Although the query results and the number of rows of the cross table slightly differed (due to the different scale 

factors chosen for data generation, 1 and 10), there was no significant modifications on performance. Furthermore, 

the BJIn OLAP Tool outperformed Mondrian in all queries. Since the results of queries processed by the BJIn 

OLAP Tool are written in a CSV file (Fig. 9) and sent through JSON to the client, if a given query is processed by 

more voluminous indices (e.g. BJIn OLAP Tool configuration) or less voluminous indices (e.g. BJIn OLAP 

Tool+MV configuration), the performances to load the results on the query browser were similar and independent of 

the index data volume. 

  
(a) tests executed over the DW1 dataset (b) tests executed over the DW10 dataset 

Fig. 19: Elapsed time to load the pages with the answers of the queries in group Q3. 

Finally, we issued five times the drill-down and the roll-up operations of query group Q3 over the DW10 dataset, 

gathered the elapsed time of each query and calculated the average of these five executions. The system cache was 

+MV 



 

 

not flushed between each query execution, aiming at fetching previously computed results in the cache. We 

evaluated the following configurations: 

 Mondrian+MV avoided joins by accessing a specific materialized view that was built to process all queries 

of the Q3 query group (i.e. Aggregate Table); and 

 BJIn OLAP Tool avoided joins by accessing bitmap join indices that were built over the previously cited 

materialized view. 

The results for the drill-down operation are shown in Fig. 20a and revealed that the BJIn OLAP Tool 

outperformed Mondrian in all queries. Also, our tool has proven to efficiently reuse cache and JSON to render the 

interface, since it drastically reduced the elapsed time to display the results of the subsequent queries that followed 

Q3.1. BJIn OLAP Tool also provided a maximum time reduction of 97% when executing Q3.2 after Q3.1, and a 

minimum time reduction of 8% when executing Q3.4 after Q3.3. 

The results for the roll-up operation are shown in Fig. 20b and revealed that the BJIn OLAP Tool outperformed 

Mondrian in all queries. Differently from the drill-down operation, the roll-up operation did not indicate decreasing 

response times when executing consecutive queries, for both the BJIn OLAP Tool and Mondrian. Particularly, there 

was an increase when executing the query Q3.1 after the query Q3.2 with our tool. This fact can be explained by the 

execution of a data aggregation that reduced 600 rows (Q3.2) to 150 rows (Q3.1) as shown in Table 4, causing an 

overhead. Even though, the response times to present the queries’ results were not greater than 0.009s. Again, the 

BJIn OLAP Tool drastically reduced the elapsed time to display the results of the subsequent queries that followed 

Q3.4, due to the use of cache and JSON. 

  
(a) interface test on the drill-down operation (b) interface test on the roll-up operation 

Fig. 20: Elapsed time to load the pages with the answers of drill-down and roll-up operations.  

In short, the results presented in this section corroborated the reasonable performance of the interface components 

adopted by the BJIn OLAP Tool, and provided by the Open Ajax Toolkit Framework. Furthermore, these results 

were achieved flushing the cache when issuing individual queries (Fig. 19), or maintaining the cache to reuse 

previously fetched results and then benefit drill-down and roll-up operations (Fig. 20). 

 

 4.6 Memory usage 

In this section we present a test that measured and compared the amount of main memory utilized by each OLAP 

tool. The web applications of Mondrian and of the BJIn OLAP Tool consumed the Java Virtual Machine heap that 

was measured using the NetBeans Profiler. This software is widely used by developers since is integrated to the 

NetBeans IDE and is free of charge. Also, the DBMS and the FastBit utilized the main memory managed by the 

operating system, which was measured using the ps_mem.py library. We summed the amount of memory of the 

OLAP tools and their corresponding query engines. In this section, all tests were run in platform P2 due to the 

complexity of the involved operations. 

Firstly, we issued the Q3 roll-up operation (Fig. 13) over the DW1 dataset and evaluated the following 

configurations: 

 Mondrian was the Mondrian OLAP Server accessing the DW1 with the DBMS as query engine; and 

 BJIn OLAP Tool avoided joins by accessing bitmap join indices with the FastBit as query engine. 

Fig. 21 shows the results. The BJIn OLAP Tool had peaks of memory usage whenever one of the four queries 

was submitted to FastBit. These peaks indicated much more memory usage than Mondrian. However, the BJIn 



 

 

OLAP Tool spent a shorter time to provide the query answer. We concluded that, for the roll-up operation, our tool 

required more memory in a shorter period, while Mondrian required less and increasing memory for a longer period. 

 

Fig. 21: Memory usage for the roll-up operation over DW1 dataset 

Secondly, we issued the query Q3.4 (Fig. 13) over the DW10 dataset and evaluated the following 

configurations: 

 Mondrian was the Mondrian OLAP Server accessing the materialized view using MDX and an Aggregate 

Table, using the DBMS as query engine; 

 BJIn OLAP Tool avoided joins by accessing bitmap join indices that were built over the cited materialized 

view, using the FastBit as query engine. 

The results are shown in Fig. 22. Although the BJIn OLAP Tool consumed more memory than Mondrian during 

the initial 6 seconds of execution, it provided a much shorter elapsed time than the latter. Also, Mondrian drastically 

increased its memory consumption after 6 seconds of execution. The FastBit introduced only one peak of memory 

consumption (totalizing 55MB) that lasted around 1 second. Again, our OLAP tool had a feasible memory usage, 

even considering the most costly query (according to Fig. 17). 

 

 

Fig. 22: Memory usage for the query Q3.4 issued over the DW10 dataset 

 

 4.7 Portability and the query processing performance 

In this section we assess the query processing performance of both Mondrian and the BJIn OLAP Tool in two 

different operating systems aiming at testing the portability. In addition to Linux Ubuntu, we installed Microsoft 

Windows 7 SP1 Professional 64 bits in the platform P2. Firstly, we issued five times the queries of group Q3 (Fig. 

13) over the DW1 dataset, gathered the elapsed time of each query and calculated the average of these five 



 

 

executions. The system cache was flushed between each query execution. We evaluated the following 

configurations in both operating systems (namely Win and Linux): 

 Mondrian+SJ accessed the DW1 dataset using MDX; and 

 BJIn OLAP Tool avoided joins by accessing bitmap join indices built over the DW1 dataset. 

The results are shown in Fig. 23. Clearly, the BJIn OLAP Tool outperformed Mondrian in both operating 

systems. Comparing Mondrian to itself, it was notably more efficient in one of the operating systems. On the other 

hand, our tool achieved similar results in most queries, independently from the operating system. 

 
Fig. 23: Portability and the query processing performance for the DW1 dataset 

Secondly, we repeated the previously described procedures on DW10 dataset to evaluate the following 

configurations in both operating system (namely Win and Linux): 

 Mondrian+MV avoided joins by accessing a specific materialized views that was built to process all queries 

of the Q3 query group (i.e. an Aggregate Table); and 

 BJIn OLAP Tool avoided joins by accessing bitmap join indices that were built over the previously cited 

materialized view. 

The results are shown in Fig. 24. Again, the BJIn OLAP Tool outperformed Mondrian in both operating systems. 

Comparing Mondrian to itself, it was notably more efficient in one of the operating systems. Both Mondrian and the 

BJIn OLAP Tool were more efficient in the Linux operating system when dealing with materialized views and 

indices built over materialized views, respectively. 

 
Fig. 24: Portability and the query processing performance for the DW10 dataset 

 4.8 Appending new rows to bitmap join indices 

In this section we evaluate the performance of the append operation over bitmap join indices maintained by the BJIn 

OLAP Tool. We utilized the platform P2, the DW1 dataset, and the most costly bitmap join indices concerning 

storage requirements, i.e., those indices built to answer the query Q4.2 (see Fig. 16). We also introduced a workload 

composed of 10% of the original index volume, i.e., 600,000 new rows to be appended to the fact table Lineorder. In 

addition, new values were also introduced in the dimension tables of the DW. As a result, the operation not only 

appended new bits to existing bit-vectors, but also created new bit-vectors and increased the attributes’ cardinalities 

as shown in Table 5. Each new bit-vector created had a minimum of 6 million bits with value 0, since these bits 

refer to the former existing rows of the index. 



 

 

Table 5: How many new bit-vectors were created for each indexed attribute 

Attribute d_year s_nation p_category lo_revenue lo_supplycost s_region c_region p_mfgr 

New bit-vectors 2 3 5 0 0 0 0 2 
 

The first test assessed the performance of the insertion of new rows in the DW1 dataset. The insertion of the new 

rows spent 184.03 seconds considering the DW1 dataset with the append trigger. On the other hand, the same 

insertion took 126.89 seconds without the trigger. Therefore, the execution of the trigger introduced an overhead of 

31.05% to the normal insertion in the DW1 dataset. This overhead should be taken into account when using the BJIn 

OLAP Tool, since it delays the insertion of new rows into the DW tables. Particularly, the delay is caused mainly 

due to several queries issued by the trigger before the insertion into the temporary table (line 08 of Algorithm 1).  

The second test evaluated the time to process the following tasks related to the append operation of the BJIn 

OLAP Tool: dumping the temporary table using the DBMS and executing ardea and ibis commands in the FastBit 

to append new values and create new bit-vectors. The whole process took 15.45 seconds. Fig. 25a reveals that 

dumping the temporary table consumed 45.12% of the time spent for the append operation. On the other hand, the 

manipulation of the indices consumed 54.88% of this time. Therefore, the tasks performed by the FastBit 

demonstrated to be more costly than those performed by the DBMS. 

  
(a) tasks developed by the DBMS and the FastBit (b) comparison between building and append operations 

Fig. 25: Tests regarding the append operation  

Finally, the last test compared the building operation to the append operation, according to the tasks performed by 

the DBMS and the FastBit. We aimed to identify if rebuilding the indices would be more advantageous than 

appending new rows to them. The results are shown in Fig. 25b. The FastBit execution spent the major parcel of the 

elapsed time to build the indices, as already identified for the task of appending new rows to indices (Fig. 25a). 

Also, the building operation took 120.33 seconds, while the append operation took only 15.45 seconds. Therefore, 

appending new rows to the indices has shown to be more advantageous than rebuilding these indices, since the 

append operation represented only 12.84% of the time spent by the building operation. 

 5 Related Work 

In Table 6 existing software are compared to the BJIn OLAP Tool. Oracle BI enables the bitmap join index and new 

rows to be appended to it. However, the use of this index is recommended only when indexing very low cardinality 

attributes [5]. Conversely, the FastBit provides the support to index attributes with higher cardinalities for our tool, 

e.g. lo_revenue whose cardinality is 3,345,588. Furthermore, Oracle BI platform is not open source software, does 

not consist of a web application and therefore was not employed in our performance evaluation. 

Regarding the Mondrian OLAP Server [6], although it supports materialized views to improve the query 

processing performance, it currently does not support the bitmap join index. Moreover, the user must learn and type 

MDX to issue queries. On the other hand, the BJIn OLAP Tool uses this index and supports a query language that is 

syntactically based on SQL. Although this query language does not provide OLAP operations, the user is able to 

perform them from the BJIn OLAP Tool graphical user interface. As a result, the BJIn OLAP Tool does not require 

knowledge about additional query languages, such as MDX that is commonly adopted by existing OLAP Tools 

[6][5][4][20]. Besides, Mondrian does not implement any mechanisms to append new rows to materialized views, 

while the BJIn OLAP Tool enables new rows to be appended to bitmap join indices. 

Important issues regarding the design of the interfaces of Mondrian and the BJIn OLAP Tool need to be stated. 

The former employs synchronous requests to transfer data from the server to the client. As a result, the server 



 

 

retrieves the query answer and sends preprocessed cross tables and charts to the client, which interprets the HTML 

code and renders the components. On the other hand, the latter employs asynchronous requests through Ajax and 

processes JSON [26] sent by the server on the client side. In short, our tool processes interface components on the 

client side, while Mondrian does not. We did not consider existing unofficial Mondrian extensions. 

Table 6: Comparison among existing software and the BJIn OLAP Tool 

Feature Oracle BI Mondrian FastBit BJIn OLAP Tool 

Supports the bitmap join index     

Supports OLAP operations     

Avoids typing complex OS commands     

Avoids typing complex DBMS commands     

Provides information visualization methods     

Is open source software     

Is a web application     

Implements the append operation     

Uses asynchronous requests and JSON     

 

In addition, the BJIn OLAP Tool interestingly uses the FastBit to be applied over DW and support drill-down, 

roll-up, slice-and-dice and pivoting OLAP operations. Although the FastBit natively supports the bitmap join index, 

building, appending rows to and dropping this index require many long and complex instructions to be typed by the 

user, both in the operating system and DBMS command lines. The BJIn OLAP Tool avoids keyboarding by 

enabling a graphical interface for the user. Also, our tool operates the FastBit on the server side, while in the client 

side the results of queries are displayed to the user in cross tables and charts via the web.  

The experimental evaluation presented in Section 4 aimed at testing the BJIn OLAP Tool. We investigated the 

feasibility of developing an OLAP tool exclusively based on the bitmap join index to process OLAP operations such 

as drill-down, roll-up, slice-and-dice and pivoting, comparing it to existing software. Differently from [27], our goal 

was not to exhaustively assess the bitmap join index against other join indices. Also, we have not considered 

specific algorithms to select the bitmap join indices, as already stated by [15]. 

 6 Conclusions and Future Work 

In this paper, we introduced the BJIn OLAP Tool to efficiently perform drill-down, roll-up, slice-and-dice and 

pivoting OLAP operations over DW, by employing the bitmap join index. The BJIn OLAP Tool is Free Software 

and was implemented and tested through a performance evaluation to assess its efficiency and to corroborate the 

feasibility of adopting strictly the bitmap join index in an OLAP tool. The performance results reported that our 

BJIn OLAP Tool provided a performance gain that ranged from 31% up to 97% if compared to existing solutions 

regarding the query processing, even for attributes with a very high cardinality. Furthermore, our tool has proven to 

efficiently process these operations both on the server and client sides, for different volumes of data and also taking 

into account different operating systems, enforcing its portability. In addition, the BJIn OLAP Tool provides a 

reasonable use of the main memory and enables new rows to be appended to bitmap join indices. 

Currently, the BJIn OLAP Tool is being applied to the Web-PIDE Project over DW containing real educational 

data from Brazilian Government [28][29], to aid decision takers on planning Educational Policies. Moreover, our 

tool is under a registration process to be formally registered as Free Software, and its internet portal is under 

development. As future work, we intend to investigate drill-across OLAP operations, adapt the tool for Spatial 

OLAP operations [17] and enable the use on mobile devices [30]. Also, the BJIn OLAP Tool will be and its Portal 

will contain proper documentation. 
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