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Abstract 
Agricultural irrigation projects require information on the quantity and frequency of streamflow to design irrigation systems. 
On the one hand, this information is obtained from gauging stations or hydrologic models. On the other hand, there are 
few gauging stations, and hydrologic models are expensive to implement, especially for small irrigation projects. This work 
proposes a method for estimating spatially distributed Flow Duration Curves (FDC), and describes the SanAntonioApp 
interactive application with open access and repository, which is used to share the results of this work. The proposed 
framework uses three years of records of a rich hydrometeorological network to implement, optimise and cross-validate 
the WFLOW-HBV distributed hydrologic model in San Antonio Creek (Salto, Uruguay). Then, FDC are generated by ex-
tending the simulation period with the long records of an agro-climatological station (30 years). The results of this work 
contribute to evaluate the water availability of the San Antonio catchment and provide information on how often this avail-
ability is guaranteed. In addition, the application allows estimating the probability of exceedance of the daily streamflow 
for a given month and location. This function could be used to estimate the environmental flow established in the current 
water regulation in Uruguay. 

Keywords: flow duration curves, distributed hydrological models, WFLOW-HBV, San Antonio catchment, open access 

application 

 

Resumen 

Los proyectos de riego necesitan información sobre la cantidad y la frecuencia del caudal de los ríos para el diseño y el 
dimensionamiento del sistema de riego. Por un lado, esta información se obtiene a través de estaciones de aforo o mo-
delos hidrológicos. Por otro lado, las estaciones de aforo son escasas y la implementación de modelos hidrológicos es 
costosa, especialmente para proyectos de riego pequeños. Este trabajo propone una metodología para estimar las curvas 
de duración de caudales (FDC, por sus siglas en inglés) espacialmente distribuidas, y describe la aplicación interactiva y 
el repositorio de acceso abierto SanAntonioApp, que es utilizado para compartir los resultados de esta investigación. El 
marco propuesto utiliza tres años de registros de una red hidrometeorológica densa para implementar, optimizar y validar 
de forma cruzada el modelo hidrológico distribuido WFLOW-HBV en el arroyo San Antonio (Salto, Uruguay). Luego, las 
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FDC se generan extendiendo el período de simulación con una estación agroclimatológica de largo registro (30 años). 
Los resultados de este trabajo ayudan a evaluar la disponibilidad de agua de la cuenca de San Antonio y brindan infor-
mación sobre la frecuencia con la que se garantiza esa disponibilidad. Además, la aplicación permite estimar la probabi-
lidad de excedencia del caudal diario para un mes y el sitio determinado. Esta característica podría usarse para estimar 
el caudal ambiental definido por la actual regulación de usos de aguas públicas de Uruguay. 

Palabras clave: curvas de duración de caudal, modelos hidrológicos distribuidos, WFLOW-HBV, cuenca del San 

Antonio, aplicación de acceso abierto 

 

Resumo 

Os projetos de irrigação precisam de informações sobre a quantidade e frequência da vazão do rio para o projeto e 
dimensionamento do sistema de irrigação. Por um lado, essas informações são obtidas por meio de estações hidrográfi-
cas ou modelos hidrológicos. Por outro lado, as estações hidrográficas são escassas e a implementação de modelos 
hidrológicos é cara, principalmente para pequenos projetos de irrigação. Este trabalho propõe uma metodologia para 
estimar curvas de permanência de vazão espacialmente distribuídas (FDC, por sua sigla em inglês) e descreve a aplica-
ção interativa e o repositório de acesso aberto SanAntonioApp, que é utilizado para compartilhar os resultados desta 
pesquisa. A estrutura proposta usa 3 anos de registros de uma rede hidrometeorológica densa para implementar, otimizar 
e validar o modelo hidrológico distribuído WFLOW-HBV no arroio San Antonio (Salto - Uruguai). Em seguida, os FDCs 
são gerados estendendo o período de simulação com uma estação agroclimatológica com uma longa série de dados (30 
anos). Os resultados deste trabalho ajudam a avaliar a disponibilidade de água na bacia de San Antonio e fornecem 
informações sobre a frequência com que essa disponibilidade é garantida. Além disso, o aplicativo permite estimar a 
probabilidade de superação da vazão diária para um determinado mês e local. Esta característica poderia ser usada para 
estimar a vazão ambiental definida pela atual regulamentação do uso público da água no Uruguai. 

Palavras-chave: curvas de permanência de vazão, modelo hidrológico distribuído, WFLOW-HBV, bacia de San 

Antonio, aplicativo de acesso aberto 

 

 

1. Introduction 

The quantity, quality, and timing of streamflow are 
crucial to sustain freshwater and estuarine ecosys-
tems, and to certain human activities (e. g., agricul-
ture, industry, electricity, domestic, recreation)(1). 
Agricultural irrigation is one of the most water-inten-
sive activities in the world, where the farmer must 
have prior information of quantity and frequency of 
streamflows to design irrigation systems and opti-
mize water use without undesirable environmental 
impacts. Flow Duration Curves (FDC) represent the 
relationship between the magnitude and the fre-
quency of streamflow and provide an estimate of the 
percentage of time a given streamflow is equaled or 
exceeded over a historical period(2). FDC are ob-
tained from long-term records of streamflow and are 
often used in hydropower, water-supply and irriga-
tion projects. In practice, it is rare to have gauging 
stations at the project sites, for that reason hydro-
logical simulation has become an attractive alterna-
tive to estimate FDC. 

Regionalization in hydrologic models is applied to 
estimate streamflow at ungauged catchments be-
cause they use effective parameters that are trans-
ferred from gauged catchments to ungauged catch-

ments(3). Narbondo and others(4) applied the region-
alization of the lumped GR4J model(5) in Uruguay, 
where the authors used the concept of physical sim-
ilarity to find relationships between model parame-
ters and physical attributes of the catchment at the 
country scale. However, this type of approach can 
be strongly influenced by local conditions, espe-
cially in small basins(6). An elegant solution is to ac-
count for spatial variations of hydrologic processes 
within the catchment domain by using spatially dis-
tributed models. In addition, this technique allows 
implementation of novel approaches in optimization 
procedures through the use of soft data(7). However, 
these techniques are too complex to be imple-
mented on-demand for small irrigation projects, as 
they require great computational coding develop-
ment time and analysis. 

A major drawback of hydrologic modeling is that the 
results are generally only used for the researchers 
who developed the model, because the format of 
the model outputs are complex and difficult to share. 
In recent years, the open-source programming lan-
guage R(8) has emerged as a solution as it has ex-
tensive benefits, such as: democratizing data sci-
ence, improving reproducible research, a wide 
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range of computational tools, repositories, and sup-
port provided by overseas contributors. The benefits 
of R have been welcomed by the hydrologic sci-
ences with a growing number of repositories, pack-
ages and applications(9). But despite the benefits of 
using R in hydrology and the needs for information 
on water availability, there is no hydrological R 
package or repository developed for Uruguay. 

This work proposes a methodology for estimating 
spatially distributed FDC and describe the SanAnto-
nioApp(10), the first application and repository devel-
oped for a catchment in Uruguay. The repository 
contains visualization tools, the input dataset, the 
hydrologic model, outputs, and FDC for any location 
of the San Antonio river. The results are presented 
in a simple interactive interface, where the user can 
visualize the results by simply clicking on the map. 

 

2. Materials and methods 

2.1 Study area and dataset 

The San Antonio Catchment (225 km2) is located in 
northwestern Uruguay in the department of Salto 
(Figure 1). It has a humid subtropical climate (Cfa) 

according to Köppen climate classification(11). The 
mean annual rainfall is 1430 mm with a slight sea-
sonality, with lower monthly rainfall in winter (south-
ern hemisphere, June-July-August) (Figure 2a), and 
average daily temperatures of 10-15 ºC for the win-
ter and 20-30 ºC in summer (Figure 2b). Precipita-
tion (14 rain gauges) and streamflow are collected 
by a rich network of gauges that became operational 
in 2018 as part of the Toward an Integrated Water 
Resources Management of Highly Anthropized Hy-
drological Systems research project: San Antonio 
Creek - Salto/Arapey Aquifer (Figure 1). Streamflow 
stations H1 (22.5 km2), H2 (33.3 km2) and H3 
(106.8 km2) are strategically placed to capture the 
heterogeneity of the hydrologic response within the 
catchment domain and to satisfy hydraulic require-
ment of stream gauging(12). Precipitation and 
streamflow were aggregated on a daily basis to 
match the temporal resolution of the hydrologic 
model. In addition, the region has two climate sta-
tions with more than 30 years of records (e. g. pre-
cipitation, temperature, evaporation, humidity, radi-
ation, wind speed, soil moisture), supported by the 
National Agricultural Research Institute (INIA-SG) 
and the School of Agronomy Experimental Station 
in Salto (EEFAS).

 

Figure 1. Hydrometeorological network and location of the San Antonio Catchment (225 km2) 
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Figure 2. (a) Monthly precipitation and (b) mean daily temperature at INIA-SG (1991-2020) 

 

 

The relief of the San Antonio Catchment is charac-
terized by rolling landscapes and plains that favor 
relatively slow runoff and drainage processes (Fig-
ure 3a). The hydrogeology is described by sedimen-
tary deposits and fissured effusive rocks of Creta-
ceous-Tertiary periods which belong to the Salto-Ar-
apey aquifer. The soils are Argiudolls & Hapluderts 
predominated by silty clay-silty clay loam(13). The 
main field capacity (Figure 3c) of the soils ranges 
60-170 mm(14). The land use and land cover have 
not changed significantly in the last 10 years. The 
land use and land cover map of 2011(15) shows that 

the main land uses are row crops (46.6%), native 
forest (19.4%), herbaceous (11.7%), urban areas 
(11.8%), citrus trees (9.4%), and forestry (1.2%). 
This information forms the basis for creating the 
static input maps of the model (section 2.2). In ad-
dition, precipitation is preprocessed by interpolating 
daily precipitation using inverse distance weighting. 
This technique accounts for the spatio-temporal var-
iability of precipitation and produces the dynamic in-
put map of the model. Figure 3d shows an example 
of precipitation interpolation for a single convective 
event that occurred on September 8, 2019. 

 

Figure 3. (a) Hypsometry, (b) land uses, (c) field capacity, and (d) 24 h precipitation field for a single event in the San 
Antonio Catchment 
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2.2 Rainfall-runoff model 

The Hydrologiska Byråns Vattenbalansavdelning 
(HBV) model, developed by Sten Bergström at the 
Swedish Meteorological and Hydrological Insti-
tute(16-18), is one of the most widely used hydrologi-
cal models worldwide(19). HBV is originally a daily 
lumped hydrologic model that uses precipitation and 
potential evapotranspiration as meteorological forc-
ing (optionally, temperature is used to model snow-
melt). Runoff, soil moisture, interception and infiltra-
tion are calculated at the catchment scale with few 
parameters. There are many versions of the model 
created over the years in different programming lan-
guages, such as Python, Matlab, R, Fortran(20-23). 

The SanAntonioApp uses the distributed version of 
the HBV-96 model(18) within the hydrologic model-
ling framework wflow (WFLOW-HBV) running in the 
Phyton environment(24). WFLOW-HBV has 4 com-
ponents: (1) snow, (2) soil moisture, (3) sub-basin 
routing, and (4) river routing. The first component is 
not considered because there is no snow precipita-
tion in the catchment (humid subtropical climate). 
The second component produces the soil water bal-
ance at a daily time step and provides the direct run-
off. This routine also calculates infiltration, seepage 
and actual evaporation without time delay. Three 
types of runoff are then considered: quick runoff, in-
terflow and slow runoff. The quick runoff and inter-
flow are represented by a single linear reservoir with 
two outputs governed by the water content of the 

upper zone. Slow runoff is also represented by a lin-
ear reservoir and simulates exfiltration from the 
lower zone. Finally, the direct runoff is routed by the 
kinematic wave equation (river routing component) 
rather than the triangular unit hydrograph of the orig-
inal HBV-96(25). In this approach, the hydraulic sec-
tion of the river is partitioned by a main channel and 
floodplains (assumed to be rectangular channels). 
This configuration allows simulating fast flows in the 
mean channel and slow flow of the flood plains; this 
characteristic is due to high roughness and shal-
lower depth of the flood plains with respect to the 
main channel. Equations and model diagrams can 
be found in the openstreams/wflow site(24). 

The spatial structure of the San Antonio WFLOW-
HBV model divides the catchment into 5491 grid 
cells with a size of 0.002º (~200 m). The model runs 
for each cell at the daily scale using the dynamic in-
put dataset (precipitation and potential evapotran-
spiration) and the static inputs maps (hypsometry, 
field capacity and land use) (section 2.1). The dy-
namic input dataset is the climatological forcing and 
the static input maps is used to parameterize each 
cell of the model; e. g., field capacity is related with 
soil type, a parameter that controls water storage in 
the soil. Then, the parameters of the model are op-
timized to improve the model performance (section 
2.3). The description of the model parameters and 
the parameters ranges used in the sensitivity analy-
sis are listed in Table 1.

 

Table 1. Parameters of the WFLOW-HBV model and parameter ranges used in the sensitivity analysis 

Parameter Description Range 

BetaSeepage Power coefficient for recharge and percolation [-] 1-5 

LP Evapotranspiration limitation factor [-] 0-1 

K4 Recession coefficient for the lower zone [1/day] 0.001-0.3 

KHQ Recession coefficient for the upper zone [1/day] 0.006-10 

AlphaNL Power coefficient for subsurface discharge [-] 0.02-20 

PERC Percolation threshold between upper and lower zones [mm/day] 0.02-20 

Cflux Maximum capillary flux [mm/day] 0.005-10 

Nriver Manning coefficient for rivers [-] 0.02-0.03 

FCmult Maximum soil moisture storage capacity coefficient [-] 0.1-3 

HQ Outflow rate of the upper zone for which the recession rate is equal to KHQ [mm/day] 0.15-100 

ICF Interception storage [mm] 0.015-30 

N Manning coefficient for hillslopes [-] 0.02-0.75 

2.3 Optimization of the model parameters 

Optimization of model parameters (also known as 
model calibration) is performed to improve model 

results with respect to observed time series of 
streamflow. The goodness of fit of the model is 
quantified using the Kling-Gupta efficiency (KGE, 
Equation 1). This index accounts for correlation, 
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bias and variability between model simulations and 
observations, and improves on other classical effi-
ciency index such as Nash-Sutcliffe efficiency or 
mean squared error(26-27). 

 

Equation. 1 

𝐾𝐺𝐸 = 1 − √(𝜑 − 1)2 + (
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
− 1)

2

+ (
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
− 1)

2

  

 

Where 𝜑 is the Pearson product-moment correla-
tion coefficient; 𝜎 is the standard deviation of simu-

lations (sim) and observations (obs), and 𝜇 is the 
mean value of simulations and observations. KGE 
ranges between -∞ and 1, values of KGE greater 
than -0.41 indicate that the model improves the 
mean flow as a benchmark(28). KGE is chosen in-
stead of other objective functions that offer better fit 
at low flow rates(29), because we aim to obtain the 
best possible fit over the full range of flows. 

Before the optimization procedure, a General Sen-
sitivity Analysis is performed by Latin Hypercubes 
Sampling (GSA-LHS) with 1000 samples to simplify 
and reduce the parameter space of the model. This 
technique is based on Markov Chain Monte Carlo 
(MCMC) experiments and allows ranking the pa-
rameters according to their importance(30-32), i. e., 
the model parameters with minor effect on the 
model results can be considered as constant val-
ues. Next, the optimization algorithm follows the 
Generalized Likelihood Uncertainty Estimation 
(GLUE)(33), which is based on the concept of equifi-
nality and is associated with predictive uncer-
tainty(34). In this technique, two groups of parame-
ters/simulations are defined: behavioral denotes the 
group of parameters/simulations that are retained, 
and non-behavioral denotes the parameters/simula-
tions that are discarded because they do not meet 
a minimum model performance criterion (defined by 
the objective function). GLUE also employs an 
MCMC sampling algorithm. For this purpose, a self-
developed R script is coupled with the Python code 
WFLOW-HBV. 

Model verification (also known as model validation) 
is made by internal spatial cross-validation(35) in-
stead of the classical technique based on partition-
ing the time domain. In this technique, two of the 
three streamflow stations are used to optimize the 
parameters and one streamflow station is used to 
evaluate the model performance across ungauged 
sites. Internal spatial cross-validation takes ad-

vantages of multiple streamflows stations and mini-
mizes the impact of a relatively short time period 
(July 2018 - February 2021). 

2.4 Flow Duration Curves estimation 

The Flow Duration Curves (FDC), as mentioned 
earlier (Section 1), is a cumulative frequency curve 
that indicates the percentage of time (or probability) 
that a given streamflow is equaled or exceeded dur-
ing a given period. This curve is calculated with 
long-records of streamflow. In the absence of long-
records of streamflow the FDC is produced by hy-
drologic simulation that provides predictions for un-
gauged sites. In this study, the distributed model 
WFLOW-HBV is used, which was spatially cross-
validated over a relatively short period of time (3 
years), which is not sufficient to produce a robust 
estimate of FDC. Considering this limitation, the 
time domain of the model was extended to a 30-year 
period (1991-2020), using the long-record of climate 
stations as the climatological forcing. 

After the model simulations are performed for the 
long period, the FDC for each river cell is calculated 
with the complement of the cumulative distribution 
function of daily streamflow. Then, the FDC is con-
sidered as a step function, which can be calculated 
with equation 2, as follows: 

 

Equation. 2 

𝐹𝐷𝐶(𝑞𝑥, 𝑞_𝑡) = 1 −
𝑛𝑢𝑚(𝑞𝑥, 𝑞𝑡)

𝑛
 

 

Here FDC is the Flow Duration Curve for a given 
streamflow 𝑞𝑥 within a given period 𝑞𝑡, the function 
num(𝑞𝑥, 𝑞𝑡) counts the number of times were 𝑞𝑡 is 
less than 𝑞𝑥, and n is the length of 𝑞𝑡. Then, the 
monthly FDCs are obtained by arranging the model 
simulations by month. 

 

3. Results  

In this work, WFLOW-HBV model was implemented 
in the San Antonio catchment during the period July 
2018 - February 2021 to estimate FDC in a distrib-
uted manner. The model was simplified from 12 to 
5 parameters by GSA-LHS and optimized according 
to GLUE. In addition, the model was cross-validated 
in the inner spatial domain of the catchment. The 
FDCs were obtained by extending the simulation 
period to 1991-2020 using the long records of the 
climate stations. Finally, the results are stored in an 
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R package SanAntonioApp and made available on 
the Github platform(10). 

3.1 WFLOW-HBV setup and performance 

The GSA-LHS reveals that KGE is sensitive only to 
4 of the 12 parameters of the model. The parame-
ters ranked by the sensitivity index are: PERC 
(0.49), KHQ (0.29), LP (0.24), ICF (0.23), N(0.16), 
HQ (0.16), BetaSeepage (0.10), K4 (0.09), Nriver 
(0.07), FCmult (0.07), AlphaNL (0.05), Cflux (0.04), 

where the sensitivity index is the number between 
the parenthesis. The first 4 parameters are kept for 
optimization, while the other 8 are considered as 
constant values. This consideration is made to sim-
plify the complexity of the optimization algorithm 
and to speed up the convergence. The values used 
for the parameters considered constant were ob-
tained from the best 100 simulations of the GSA-
LHS; these values are listed in Table 2.

 

Table 2. Values of parameters assumed as constant 

BetaSeepage [-] K4 [1/day] AlphaNL [-] Cflux [mm/day] Nriver [-] FCmult [-] HQ [mm/day] N [-] 

3.2 0.16 9.76 5.17 0.03 5.17 40.9 0.38 

 

Then, the PERC parameter was regionalized for the 
so-called “upper-catchment” (PERC1) and “lower-
catchment” (PERC2). This regionalization was done 
to optimize the parameter according to the soil type, 
since the Field Capacity map shows that the upper-
catchment differs from the lower-catchment (Figure 
3c). The probability density functions of the behav-
ioral parameters (Figure 4) show that PERC ranges 
from 0 to 10 mm (Figure 4a). The mean value of 

PERC1 is 5.5, while PERC2 is 3.2. The standard 
deviation of PERC1 and PERC2 is quite similar and 
is 2.4. KHQ has a behavioral response for the entire 
range of the sample domain (Figure 4b), with the 
most frequent behavioral values located around 7. 
ICF (Figure 4c) and LP (Figure 4d) are both slightly 
left skewed, with the mean of ICF being 22 mm and 
of LP being 0.8 (with the median values close to the 
mean in both cases).

 

Figure 4. WFLOW-HBV optimized density functions of: (a) Percolation threshold for the upper (PERC1) and lower 
(PERC2) catchment; (b) Recession coefficient for the upper zone; (c) Interception storage, and (d) Evapotranspiration 

limitation factor 
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The KGE values are greater than 0.7 after the opti-
mization/validation procedures, H1 has better per-
formance than H2, and H2 has better performance 
than H3 (Figure 5a). In other words, the perfor-
mance of the model decreases as the area of the 
sub-basins increases. The percentage of bias (Fig-
ure 5b) is 10% with under/over-estimate for the 
lower/upper zones of the catchment. Internal spatial 
cross-validation is performed only for H2 and H3. 
This consideration was made to avoid the singulari-
ties of the lower catchment; for example, the lower 
catchment has field capacities below 100 mm, while 
the upper catchment is in the range of 60-170 mm 
(Figure 3c). The validation procedure shows that the 
performance of the model is retained for the inner 
spatial domain with a small loss of prediction skill. 

 

Figure 5. (a) Kling-Gupta Efficiency (KGE) and (b) Per-
centage Bias of model simulations on H1, H2 and H3 
streamflow stations (subindex cal & val mean calibra-

tion and validation, respectively) 

 

 

Figure 6 shows a graphical verification of the ob-
served and simulated hydrographs for January 
2019. This month was an extraordinarily rainy 
month with multiple complex flood events that are 
particularly difficult to simulate. The black lines rep-
resent the observed runoff, the red line is the mean 
of the behavioral simulations, and the grey shadow 

is the 95% prediction uncertainty. The ratios of Jan-
uary 2019 maximum streamflows to calibration pe-
riod maximum streamflows are 0.56 (Chico), 0.42 
(Cabecera) and 0.34 (Ruta 3). This graphical repre-
sentation shows that the peaks streamflows are well 
represented with a slight delay for a few days. An 
interesting aspect for stations H2 and H3 is that the 
observed values show 5 streamflow peaks rather 
than the 4 simulated peaks given by WFLOW-HBV. 

 

Figure 6. Observed and simulated hydrographs for 
January 2019 with the 95% prediction uncertainty 
(95PPU) for (a) H1, (b) H2, and (c) H3 streamflow 

stations 

 

 

3.2 Flow Duration Curves 

Monthly and annual Flow Duration Curves have 
been estimated for the entire river domain. Figure 7 
shows the FDC for August (Figure 7a), October 
(Figure 7b), and April (Figure 7c) for an arbitrary 
river section of the river located at -57.829ºW -
31.307ºS (blue lines) and the annual FDC (red 
lines). This figure can be read according to two 
basic interpretations: (1) Shifted curves, when one 
curve is shifted to the left relative to the other low 
streamflow will be more frequent. This is the case 
for August and October, where August (shifted to 
the left with respect to annual) is generally below the 
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annual streamflow and annual streamflow is below 
October (shifted to right with respect to annual). (2) 
Looped curves, this is an interesting case that 
shows differences in the variance of the two da-
tasets. For example, April is below annual on the 
left-tail, and above on the right-tail. This means that 
both high and low streamflows are more common in 
April. Also, the interception of the two curves implies 

equal probability for a given streamflow. Another 
view is obtained by contrasting the probability den-
sity distributions of the streamflow which show the 
probability within a certain range (Figure 7d-f). This 
representation shows shifted to the left for August, 
shifted to the right for October, and high dispersion 
and flattening for April, which is helpful in interpret-
ing the FDC.

 

 

Figure 7. (a-c) Monthly Flow Duration Curves and (d-f) Monthly Density probability distribution of daily streamflow for an 
arbitrary river section located in -57.829ºW -31.307ºS 

 

 

3.3 SanAntonioApp 

FDC were shared with the SanAntonioApp R pack-
age(10). The package is hosted on the Github plat-
form and can be installed via the R console by the 
following command: 

 

devtools::install_github("rafaelnavas/SanAntonioApp") 

 

The package has been tested on Ubuntu and Win-
dows operating systems. Version 1.0. contains the 
folder “data”, with the FDCs and the function 

“SanAntonioFDC()”, which runs the application into 
your local environment. In addition, to make the ap-
plication available from any browser, it is temporar-
ily placed in the following link: https://rafaelna-
vas23.shinyapps.io/SanAntonioApp/. 

The SanAntonioApp allows the user to query the 
FDC by month and location. The month is selected 
by the user with a slider input, and the locations are 
selected by a simple click on the map. The input 
panel is located on the left side under the tag 
“Aplicación”. The FDC is then displayed on the right 
side of the screen. Figure 8 shows a simplified dis-
play of the application.
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Figure 8. Display of the SanAntonioApp: The bottom “Inicio” (1) is the home with credits. Brief instructions are shown in 
“Modo de uso” (2). The application page can be accessed by clicking “Aplicación” (3). The month can be chosen in the 
slider input (4). Location of the target site is assigned by clicking on the map. (6) Location of estimation site, (7) Coordi-

nates of the target site, (8) Coordinates of the estimation site, (9) Distance between target and estimation sites, (10) 
Flow Duration Curve 

 

 
4. Discussion 

Spatially distributed FDC were estimated for the 
San Antonio catchment. Estimation was performed 
by distributed hydrological simulation using the 
WFLOW-HBV model. The conceptual model of the 
catchment represents the actual physical properties 
shown in Figure 3. In other words, the model does 
not take into account land use changes, farmer-led 
irrigation development or climate change; which are 
factors that could have an effect in the runoff re-
sponse of the catchment(36-38). According to the land 
use map of 2000, and information given by the Na-
tional Water Authority (DINAGUA), there has been 
no significant change in land use or surface water 
allocation in the catchment over the past 20 years, 
which gives some confidence to the hypothesis 
taken in the model implementation. 

Some applications of the FDC can be summarized 
as: (1) estimating water quantity and frequency in 
the interior of the catchment. This is useful for know-
ing whether a section of river can meet a particular 
water demand. For example, a farmer on the 
riverbank might know how much water is available 
and how often that amount is guaranteed. (2) Envi-
ronmental flow estimation. A variety of definitions of 
environmental flow can be found in the literature. 
Basically, it is the flow regime required to achieve 
the desired ecological objectives. Look-up tables, 

desktop analysis, functional analysis and hydraulic 
habitat modelling are different approaches used 
around the world(39). In Uruguay, environmental flow 
is determined using look-up tables in the Decree 
368/018 (provisional)(40), which determines environ-
mental flow based on the probability of exceeding 
the daily streamflow for a given month, location in 
the river, and the type of water intakes. The prelim-
inary regulation establishes an exceedance proba-
bility of 60% for reservoirs and 80% for direct water 
intake. These values of streamflow can be easily de-
termined at any location in the catchment using the 
SanAntonioApp. 

An interesting finding in the optimization of the dis-
tributed model was that the performance of the 
model decreases as the area of the sub-basins in-
creases. These results contradict previous research 
that found that catchments with larger areas gener-
ally performed better(30)(41). However, this finding 
could be explained by the fact that the uncertainty 
in the hydrologic simulation also depends on the un-
certainty in the precipitation input(42-44). The present 
study was conducted with a very high density of rain 
gauges for the lower catchment (Figure 1). The rain 
gauge network design had two purposes: (1) to val-
idate rainfall estimation using microwave links(45), 
which requires a large number of rain gauges in a 
very small area, and (2) calibration/validation of the 
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hydrologic model used in the present study. This 
fact explains why the upper part of the basin may be 
subject to larger uncertainties in the precipitation in-
put. In addition, the model in the lower/upper catch-
ment shows a negative/positive bias. This result 
could be due to the dynamics between the aquifer 
and surface waters, which is mainly dominated by 
percolation in the upper catchment and exfiltration 
in the lower catchment, which is not considered by 
the model. Another source of uncertainty are the dy-
namics of vegetation, which affects actual evapo-
transpiration, and the influence of climate variabil-
ity(46-47). Neither factor was considered in this work. 
Future works should study the implementation and 
performance of integrated surface-subsurface mod-
els(48) and the testing of information content given 
the dependence of parameter to climate variability. 

The FDC generated in the present study allows to 
characterize the streamflow regime by month, with 
August being the month with less streamflow, and 
October and May being the months with more 
streamflow. In addition, April is more variable than 
the other months. This hydrological regime is trig-
gered by precipitation, which has a similar shape. 
The streamflows regime in the San Antonio catch-
ment in northern Uruguay contrasts with the hydro-
logical regime of some basins in the south of the 
country. For example, the hydrologic regime of the 
Santa Lucia catchment is mainly determined by 
temperature/evapotranspiration, since precipitation 
is uniform throughout the year(37). 

 
5. Conclusions 

This paper presents the development of the SanAn-
tonioApp, which is part of the project "Toward an In-
tegrated Water Resources Management of Highly 
Anthropized Hydrological Systems: San Antonio 
Creek - Salto/Arapey Aquifer", funded by the Na-
tional Agency for Investigation and Innovation. 

The SanAntonioApp is an R package and applica-
tion that contains the WFLOW-HBV model of the 
San Antonio catchment, the input dataset, model 
outputs and interactive visualization tools for Flow 
Duration Curves. The application can be used to es-
timate the frequency of a given flow or the flow for a 
given frequency at any location in the river network, 
which is useful for estimating water availability as 
well as environmental flows for current water regu-
lation in Uruguay. 
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